Смекни!
smekni.com

Теории управления (стр. 5 из 22)

Запаздывающее звено называется линией задержки, где

t=T - время запаздывания ЛЗ. j(w)=wT;

5) Колебательное звено

Передаточная функция:

АЧХ
- параметр затухания

<1 - устойчивая система

>1 - самовозбуждающаяся

система

ФЧХ

6) Неминимально фазовое звено

Передаточная функция:

АЧХ при a=b :

; W(w)=1

ФЧХ при а=b :
АЧХ

ФЧХ

Цифровые системы автоматического управления

Задан процесс: Будем рассматривать про-

y(t) цесс y(t) в дискретные мо-

менты времени.

Такой процесс называется с

дискретным временем.

Значения этого процесса в

дискретные моменты :

- значения

Существуют два типа процесса с дискретным временем :

1)Процесс с дискретным временем и непрерывным множеством

состояний. Это означает, что функция

является непре-

рывной ( если это случайный процесс, то

непрерывна в

среднем квадратическом).

ПЗС

y(t) Преобразователь
- непрерывные функции

ПЗС - прибор с зарядовой связью

- интервал дискретизации во времени (квантование по

времени)

Для таких процессов составляются разностные уравнения :

- 1-е приращение, конечная разность

- 2-я разность

2) Процесс с дискретным временем и дискретным множеством

состояний.


y(t) АЦП

Процесс 2 отличается от процесса 1 тем, что

записы-

вается в цифровом виде - дискретная функция, вся база

исследований другая. Квантование идет и во времени и

по уровню.

Очень часто делается бинарное квантование 0;1. В этом

случае аппаратура сильно упрощается.

Замечание :

1) В первом случае (ПЗС) если y(t)~

, то выход-

ной процесс

, т.е. такой же, но дискрет-

ный.

2)

- биномиальное распределение.

Оказывается, если число уровней квантования ³ 8,то

их можно отождествить с непрерывнымисистемами.

Представление дифференциальных уравнений, описывающих

системы автоматического управления конечных разностей

(1)

- первая разность, аналог пер-

вой производной

n - непрерывное время, непрерывное множество состо-

яний.

- аналог 2й

производной

.......................................

- аналог К-той производной

Если это подставить в непрерывное дифференциальное урав-

нение то получим следующее :

(2)

Если подставить в (2) разности, то получим :

(3)

-

- разностное уравнение с дискрентным временем.

Z -преобразования

Аналогичны преобразованию Лапласа. Это очень удобный аппарат для исследования систем с дискретным временем в

частотной области. Для этого вместо экспоненты (для упро-

щения) вводится

- это есть Z-преобразование. Для

того, чтобы ввести Z-преобразование используется сле-

дующий прием связи непрерывного процесса X(t)и дискретно-

го
(1)

X(1),X(2) - выборка с дискрет-

нымвременем ¬