Смекни!
smekni.com

Анализ производственных функций (стр. 2 из 3)

Рассмотрим темп роста выпуска

Если возвести обе части уравнения в степень

, получим соотношение

в котором справа — взвешенное среднее геометрическое темпов роста затрат ресурсов, при этом в качестве весов выступают относительные эластичности факторов

При а1+ а2 > 1 выпуск растет быстрее, чем в среднем растут факторы , а при а1+ а2 < 1 - медленнее. В самом деле, если факторы растут (т.е. Kt+1>Kt, Lt+1>Lt) то согласно

растет и выпуск (т.е. Xt+1>Xt),следовательно, при а1+ а2 > 1

т.е. действительно, темп роста выпуска больше среднего темпа роста факторов . Таким образом, при а1+ а2 > 1 ПФ описывает растущую экономику.

Линией уровня на плоскости К, L, или изоквантой, называется множество тех точек плоскости, для которых F(K, L) =Х0=const. Для мультипликативной ПФ изокванта имеет вид :

или

т.е. является степенной гиперболой, асимптотами которой служат оси координат.

Для разных К, L, лежащих на конкретной изокванте, выпуск равен одному и тому же значению X0, что эквивалентно утверждению о взаимозаменяемости ресурсов.

Поскольку на изокванте F(K, L) = Х0 = const, то

В этом соотношении

,
поэтому dK и dL имеют разные знаки: если dL<0 что означает сокращение объема труда, то dK>0, т.е выбывший в объеме
труд замещается фондами в объеме dK.

Поэтому естественно следующее определение, вытекающее из

.

Предельной нормой замены SK труда фондами называется отно­шение модулей дифференциалов ОФ и труда:

соответственно , предельная норма замены SL фондов трудом

при этом Sk SL=1

Для мультипликативной функции норма замещения труда фондами пропорциональна фондовооруженности:

,

что совершенно естественно: недостаток труда можно компенсировать его лучшей фондовооруженностью.

Изоклиналями называются линии наибольшего роста ПФ. Изокли­нали ортогональны линиям нулевого роста, т.е. изоквантам. Поскольку направление наибольшего роста в каждой точке (К, L) задается градиентом

grad

, то уравнение изоклинали записывается в форме

В частности, для мультипликативной ПФ получаем,

поэтому изоклиналь задается дифференциальным уравнением,

, которое имеет решение

,

где (L0; К0) - координаты точки, через которую проходит изоклиналь. Наиболее простая изоклиналь при а = 0 представляет собой прямую

На рис. 1 изображены изокванты и изоклинали мультипликатив­ной ПФ.

При изучении факторов роста экономики выделяют экстенсивные факторы роста (за счет увеличения затрат ресурсов, т.е. увеличения масштаба производства) и

рис. 1

интенсивные факторы роста (за счет повы­шения эффективности использования ресурсов).

Возникает вопрос: как с помощью ПФ выразить масштаб и эффек­тивность производства? Это сравнительно легко сделать, если выпуск и затраты выражены в соизмеримых единицах, например представлены в соизмеримой стоимостной форме. Однако проблема соизмерения на­стоящего и прошлого труда до сих пор не решена удовлетворительным образом. Поэтому воспользуемся переходом к относительным (безраз­мерным) показателям.В относительных показателях мультипликативная ПФ записывается следующим образом:

те X0, K0L0 значения выпуска и затрат фондов и труда в базовый год.

Безразмерная форма , указанная выше , легко приводится к первоначальному виду

Таким образом, коэффициент

получает естественную интер­претацию - это коэффициент, который соизмеряет ресурсы с выпуском. Если обозначить выпуск и ресурсы в относительных (безразмер­ных) единицах измерения через x, k, l, то ПФ в форме

запи­шется так:

Найдем теперь эффективность экономики, представленной ПФ . Напомним, что эффективность — это отношение результата к затратам. В нашем случае два вида затрат: затраты прошлого труда в виде фондов k и настоящего труда l. Поэтому имеются два частныхпоказателя эффективности:

-фондоотдача ,
- производитель труда.

Поскольку частные показатели эффективности имеют одинаковую размерность (точнее, одинаково безразмерны), то можно находить любые средние из них. Так как ПФ выражена в мультипликативной форме, то и среднее естественно взять в такой же форме, т.е. среднегеометриче­ское значение.

Итак, обобщенный показатель экономической эффективности есть взвешенное среднее геометрическое частных показателей экономичес­кой эффективности:

в котором роль весов выполняют относительные эластичности

т.е. частные эффективности участвуют в образовании обобщенной эффективности с такими же приоритетами, с какими входят в ПФ соответствующие ресурсы.

Из

вытекает, что с помощью коэффициента экономичес­кой эффективности ПФ преобразуется в форму, внешне совпадающую с функцией Кобба-Дугласа:

k=Eka l1-a

в соотношении с чем Е - не постоянный коэффициент, а функ­ция от (К, L).

Поскольку масштаб производства М проявляется в объеме затрачен­ных ресурсов, то по тем же соображениям, которые были приведены при расчете обобщенного показателя экономической эффективности, сред­ний размер использованных ресурсов (т.е. масштаб производства)

M=kal1-a

В результате получаем , что выпуск Х есть произведение экономической эффективности и масштаба производства:

Х=ЕМ.

Линейная производственная функция

X=F(K,L)=EKK+ELL

Где EK и ELчастные эффективности ресурсов.

EK =

-фондоотдача , EL=
- производитель труда.

Поскольку частные показатели эффективности имеют одинаковую размерность (точнее, одинаково безразмерны), то можно находить любые средние из них.

Эластичности замены труда фондами для линейной ПФ = ¥

эта величина показывает, на сколько процентов надо изменить фондо­вооруженность, чтобы добиться изменения нормы замены на 1%.

Производственная функция затраты-выпуск

X=F(K,L)=

Где:

Коэффициенты эластичности представленные в виде логарифмических производных факторов показывают, на сколько процентов увеличится выпуск, если фактор возрастет на 1%. Например, согласно ПФ X=0,931K0,539L0,594