Смекни!
smekni.com

Методика роботи над простими задачами повязаними з різницевим і кратним відношенням (стр. 5 из 7)

Спочатку під час розв'язування кожної задачі треба використати ілюстрації, які допоможуть вибрати дію, а пізніше досить зробити короткий запис спочатку під керівництвом учителя, а потім самостійно, аналізуючи при цьому задачу.

Розв'язування; задач на різницеве порівняння може бути добре засвоєно, якщо діти не тільки зрозуміють відношення «більше» і «менше», а й розумітимуть подвійний зміст різниці: якщо перше число більше від другого на кілька одиниць, то друге число менше від першого на стільки ж одиниць. Підготовчі вправи саме й повинні забезпечити засвоєння учнями цього зв'язку. Наведемо зразки таких вправ:

1) Покладіть в один ряд 7 квадратів, а в другий — на 2 квадрати більше. Скільки квадратів у другому ряді? На скільки квадратів більше в другому ряді? (На 2.) Що можна сказати про число квадратів у першому ряді? (їх менше.) На скільки? (На 2.) Так, у першому ряді не вистачає двох квадратів, щоб було стільки ж, скільки в другому ряді. В другому ряді на 2 квадрати більше, ніж у першому, тоді в першому на 2 квадрати менше. (Показує.)

2) Розв'язавши деякі задачі на збільшення і зменшення числа на кілька одиниць, проаналізуйте те саме співвідношення.

3) Розв'яжіть задачі-запитання, наприклад: «У нашому класі дівчаток на З менше, ніж хлопчиків. Що можна сказати про кількість хлопчиків?»

4) Задачі з виразом «на стільки більше» перетворіть у задачі з виразом «на стільки менше» і навпаки. Наприклад, діти розв'язали задачу: «Довжина класу 8 м, а ширина на 2 менша. Чому дорівнює ширина класу?» Учитель пропонує скласти з цими самими числами, але з словом «більше» нову задачу, в якій треба визначити довжину класу.

Із задачами на знаходження різниці можна ознайомити так. (Прийом запропонувала Н. С. Попова.)

Учитель прикріплює на дошці зліва 6 кружків із зеленого паперу, а справа 9 червоних кружків; кожний кружок обводить крейдою. Діти лічать, скільки кружків зліва і скільки справа, встановлюють, що справа більше, ніж зліва.

Треба дізнатися, на скільки червоних кружків більше, ніж зелених. Для цього зніматимемо відразу по одному червоному і одному зеленому кружку (знімають доти, доки на дошці не залишаться лише 3 прикріплені червоні кружки і «сліди» від знятих кружків.

Скільки зелених кружків зняли? (6.) А червоних? (Також 6; стільки ж, скільки зелених). Скільки червоних кружків залишилось? (3.) На скільки було більше червоних кружків, ніж зелених? (На 3.) Як дізналися? (Від 9 відняли 6, буде 3.) Що показує число 33 (Червоних кружків на 3 більше, ніж зелених, а зелених на З менше, ніж червоних?) Якою дією дізналися, на скільки більше червоних кружків, ніж зелених, і на скільки зелених кружків менше, ніж червоних? (Відніманням. Від 9 відняли 6.)

Надалі під час розв'язування таких задач треба використовувати аналогічні ілюстрації, звертаючи щоразу увагу на те, що, визначаючи, на скільки одиниць одне число більше чи менше від другого, виконують дію віднімання.

Внаслідок спостережень учні формулюють висновок: щоб дізнатися, на скільки одне число більше чи менше від другого, треба від більшого числа відняти менше. Далі діти розв'язують задачі, виходячи з цього правила.

Надалі, узагальнюючи спосіб розв'язування, важливо запобігти утворенню формальних зв'язків: діти часто слово «більше» пов'язують лише з дією додавання, а «менше» — з дією віднімання. Для цього треба пропонувати пари задач, аналогічні такій:

1) У Михайлика було 7 кроликів, а у Василька на 2 кролики більше. Скільки кроликів було у Василька?

2) У Володі було 10 кроликів, а у Євгена 6 кроликів. На скільки більше кроликів було у Володі, ніж у Євгена?

Розв'язавши задачі цієї пари, треба запитати, чому їх розв'язують різними діями, хоч в обох є слово «більше». Діти мають сказати, що під час розв'язування першої задачі знаходимо число, яке більше від заданого, а розв'язуючи другу задачу, дізнаємося, на скільки одне число більше за друге.

Підготовкою до розв'язання задач на збільшення і зменшення числа на кілька одиниць, виражених у непрямій формі, є добре знання подвійного змісту різниці, що й повинно бути міцно засвоєне дітьми під час розв'язування задач на різницеве порівняння.

Обидві ці задачі розглядають одночасно. Спочатку треба використати ілюстрації і докладно проаналізувати задачі. Наприклад, учень пропонує розкласти квадрати і кружки в два ряди так, щоб квадратів було 6 і щоб їх було на 2 більше, ніж кружків.

Скільки кружків ви поклали? (4.) Як дізналися, що треба покласти 4 кружки? (Від 6 відняли 2.) Чому віднімали, адже в задачі сказано «на 2 більше»? (Це квадратів на 2 більше, ніж кружків, отже, кружків буде на 2 менше, ніж квадратів.)

Виконавши подібні підготовчі вправи, можна ознайомити дітей з розв'язуванням задач.

Дуже важливо при цьому навчити дітей аналізувати задачі. Під час аналізу задачі діти повинні виділити шукане число і встановити, більше воно чи менше, ніж задане число. Такий методичний прийом навчання аналізу задачі виправдав себе на практиці. Дітям пропонують керуватися такими правилами:

1) Треба подумати, що запитується в задачі.

2) Треба подумати, яке буде число у відповіді: більше чи менше, ніж відоме, і сказати, за допомогою якої дії можна розв'язати задачу.

Спочатку цими правилами діти користуються під керівництвом учителя, а потім самостійно. Так, розв'язуючи задачу «У полі працювало 10 комбайнів; їх було на 4 менше, ніж вантажних машин. Скільки вантажних машин працювало в полі?», учень міркує: «Спочатку я подумаю, що треба визначити в задачі: треба визначити, скільки вантажних машин працювало в полі; тепер я подумаю, вантажних машин було більше, чи менше, ніж комбайнів: якщо комбайнів було на 4 менше, ніж вантажних машин, то, отже, вантажних машин було на 4 більше, ніж комбайнів. Задачу розв'язуємо додаванням».

Для узагальнення способу розв'язання цих задач порівнюємо розв'язання пар задач, аналогічних такій:

1) Братові 5 років, він на 2 роки старший від сестри. Скільки років сестрі?

2) Братові 10 років, а сестра на 3 роки старша. Скільки років сестрі?

Розв'язавши ці задачі, треба запитати, чому вони розв'язані різними діями, хоч в обох сказано «старші».

Корисно також розв'язувати вправи на перетворення задач, сформульованих у непрямій формі, у задачі, сформульовані в прямій формі, і навпаки.

Для узагальнення розв'язання задач, пов'язаних із поняттям різниці, доцільно використати прийом складання і розв'язування учнями всіх шести задач, пар або трійок задач із збереженням того самого сюжету і чисел.

Прості задачі, пов'язані з поняттям кратного відношення, вводять у такому самому порядку, як і задачі, пов'язані з поняттям різниці.

Розв'язуючи задачі на збільшення числа в кілька разів, виражені в прямій формі, спираються на добре розуміння конкретного змісту дії множення і змісту виразу «більше...». Отже, підготовчу роботу треба спрямувати на вивчення цих питань. Щоб розкрити зміст виразу «більше в...», доцільно виконати вправи, подібні до таких:

1) Покладіть зліва 4 кружки, а справа 2 рази по 4 кружки. У цьому разі кажуть, що справа кружків у 2 рази більше, ніж зліва; бо там 2 рази по стільки кружків, скільки їх зліва; зліва у 2 рані менше, ніж справа,— там один раз 4 кружки.

2) Покладіть зліва 2 квадрати, а справа 3 рази по 2 квадрати. Що можна сказати про число квадратів справа: їх більше чи менше, ніж зліва? (їх у 3 рази більше, ніж зліва, а зліва в 3 рази менше, ніж справа.).

3) Покладіть справа 3 трикутники, а зліва в 4 рази більше. Що це означає? (По 3 трикутники взято 4 рази). ТУТ о можна сказати про число трикутників справа: їх більше чи менше, ніж зліва? (їх у 4 рази менше.)

Виконавши кілька таких вправ, можна приступити до розв'язування задач.

Покладіть в один ряд 5 квадратів, а в другий у 2 рази більше. Як ви це зробите? (Покладіть 2 рази по 5 квадратів.) Скільки всього квадратів у другому ряді? (10.) Як дізналися? (5 помножили на 2.)

Тепер можна розглянути задачі з конкретним змістом, наприклад: «У Володі було 2 простих олівці, а кольорових у 3 рази більше. Скільки кольорових олівців було у Володі?» З'ясовують, що означає «у 3 рази більше», потім задачу ілюструють і розв'язують.

Вибір арифметичної дії діти пояснюють так: кольорових олівців було в 3 рази більше, отже, їх було 3 рази по 2, треба 2 помножити на 3.

Розв'язавши задачу, треба запитати: «Що можна сказати про кількість простих олівців — їх більше чи менше, між кольорових, і в скільки разів?» Такі запитання допоможуть дітям зрозуміти зміст виразу «менше в...». Внаслідок розв'язування багатьох таких задач діти засвоюють, що число можна збільшити в кілька разів за допомогою дії множення. Вибір арифметичної дії вони пояснюють коротше: щоб дістати в З рази більше, треба... помножити на 3.

Розв'язування задач на збільшення числа в кілька разів треба поєднувати з розв'язуванням задач на збільшення числа на кілька одиниць, щоб діти їх не плутали.

Задачі на зменшення числа в кілька разів, виражені в прямій формі, розглядають після того, як діти набудуть умінь розв'язувати задачі із застосуванням ділення на рівні частини, засвоять подвійний зміст відношення: якщо перше число більше за друге в кілька разів, то друге менше від першого у стільки ж разів. Це співвідношення діти спочатку засвоюють в процесі роботи над задачами на збільшення числа в кілька разів.

Ознайомити з розв'язанням цих задач можна приблизно так.

Покладіть у ряд 6 кружків. У другий ряд треба покласти в З рази менше кружків. Якщо в другому ряді їх буде в 3 рази менше, то що можна сказати про кількість кружків у першому ряді? (їх буде в 3 рази більше.) Отже, у першому ряді 3 рази по стільки, скільки повинно бути в другому ряді. Як дізнатися, скільки кружків повинно бути в другому ряді? (Треба 6 поділити на 3, буде 2.) Виконайте це за допомогою кружків. (Виконують.) У кожній частині буде по 2. У другому ряді повинно бути 2 кружки, покладіть їх. Розв'язавши кілька аналогічних вправ, діти засвоюють, що взяти, наприклад, кружки у 2 (3, 4,...) рази менше, ніж задано,— це означає поділити задане число кружків на 2 (3, 4,...) рівні частини і взяти стільки кружків, скільки їх в одній такій-частині.