Смекни!
smekni.com

Разработка модели обучения школьному курсу стереометрии на модульной основе (стр. 9 из 21)

8. Главное достоинство модульной системы заключается в возможности плавного перехода от существующей организации учебно-воспитательного процесса, без ее разрушений и нежелательных деформаций в ней, к новым моделям педагогической технологии.

Глава 2. РАЗРАБОТКА МОДУЛЬНОЙ СТРУКТУРЫ ПРОЦЕССА ОБУЧЕНИЯ СТЕРЕОМЕТРИИ В СИСТЕМЕ ШКОЛЬНОГО ОБРАЗОВАНИЯ

2.1 МОДЕЛЬ ОБУЧЕНИЯ ШКОЛЬНОМУ КУРСУ СТЕРЕОМЕТРИИ НА МОДУЛЬНОЙ ОСНОВЕ

На основе анализа психолого-педагогической и методической литературы, опыта преподавания стереометрии в школе нами разработана модель обучения школьному курсу стереометрии на модульной основе.

Модель решает следующие задачи:

1. Усиление практической ориентации и прикладной направленности процесса овладения предметом путем достижения оптимального сочетания фундаментальных и практических знаний.

2. Направленность образовательного процесса не только на усвоение знаний, но и на развитие способностей мышления.

3. Изменение методов, форм и средств обучения, направленных на формирование познавательной самостоятельности школьников, а также практических навыков анализа информации, самообучения.

4. Осуществление целенаправленного управления формированием и совершенствованием умений самостоятельной работы школьников.

Перечислим подходы к организации модели:

1. Контекстный (Вербицкий А.А.), позволяющий смоделировать учебный процесс таким образом, чтобы ученик оказался в ситуации самостоятельного целеполагания и целеосуществления.

2. Личностно-ориентированный предполагает опору на активную познавательную деятельность ученика при освоении предметного содержания, организацию процесса обучения в соответствии с его образовательными потребностями и индивидуальными особенностями.

3. Деятельностный направлен на овладение способами получения фундаментальных знаний и умений, погружение в реальную деятельность по овладению соответствующими навыками и технологиями.

4. Модульный определяет высокую степень систематизации знаний и умений в содержании обучения, проблемное изложение материала, акцент на формирование методов деятельности, повышение уровня самостоятельности в решении конкретных проблем.

5. Системный дает ряд преимуществ, основные из которых заключаются в возможности комплексного подхода к формированию системы математических знаний, распознании и анализе явлений и процессов окружающей действительности.

6. Компетентностный

ориентирован на освоение умений и обобщенных способов деятельности. Понятие компетентности включает не только когнитивную и операционально-технологическую составляющие, но и мотивационную, этическую, социальную и поведенческую.

Перечислим факторы, влияющие на эффективность повышения геометрической подготовки школьников 10-11-х классов:

1. Мотивационные - формирование потребности в овладении познавательной самостоятельностью как важнейшим фактором принятия адекватных решений в условиях реальной действительности; развитие интереса к знаниям и предмету, стремления познать новое, любопытства и любознательности.

2. Содержательные – реализация возможностей контекстного, системного и личностно-деятельностного подходов в овладении предметными знаниями, познавательными, коммуникативными и рефлексивными умениями. Эти факторы являются необходимыми элементами самого процесса познания.

3. Процессуальные - овладение общими методами и приемами учения как инструментами, обеспечивающими интеграцию знаний, их действенность в выборе наиболее приемлемых способов решения задач в учебно-познавательной деятельности. В данную группу включены методы, приемы и способы работы учителя с учениками (дифференцированный и индивидуальный подходы, проблемное и модульное изложение материала, компьютерная поддержка процесса обучения и др.); формы проведения урочных и внеурочных занятий (семинары, конференции, олимпиады, исследовательская и научная работа и др.).

4. Прикладные – реорганизация учебно-познавательной деятельности путем изменения способа учения как важнейшей предпосылки доведения теоретических знаний до уровня их практического применения.

5. Социальные - отношения с родителями и окружающими, влияние средств массовой информации и т.д.

6. Психологические - обусловлены возрастными особенностями старшеклассников (выработка собственных взглядов и убеждений, потребность в самосовершенствовании и др.). К ним относятся факторы личного характера: склонности, способности, интересы, уровень общеобразовательной подготовки, волевые особенности.

2.2 ОРГАНИЗАЦИЯ ВНЕДРЕНИЯ РАЗРАБОТАННОЙ МОДЕЛИ

Проверка эффективности разработанной модели обучения школьному курсу стереометрии на модульной основе осуществлялась с 24 учащимися 10 класса МОУ «Школы №15» города Соликамска в 2007 учебном году. В качестве контрольного класса выступал 10 «А» класс. Внедрение проводилось на уроках геометрии. Целью работы была проверка эффективности разработанной модели обучения школьному курсу стереометрии на основе модульной технологии. Апробирование проводилось в три ступени: констатирующий срез, проведение уроков, контрольный срез. Охарактеризуем каждую ступень. На первой ступени были проведены методики определения уровня обучаемости и обученности (методики представлены в приложении 4) и самостоятельная работа, в ходе которой выявлялись знания и умения учащихся, которыми они обладают на данный момент времени. Вторая ступень работы представляла собой непосредственно уроки. Занятия проводились по схеме:

№ урока-модуля в разделе…

№ урока-модуля в теме…

Тема урока…

Триединая цель урока (темы)…

Дифференцированная цель урока для ученика…

Что должен знать ученик в конце темы…

Что должен уметь ученик в конце темы…

Формируемая область понимания…

Закрепление и развитие общеучебных умений и навыков…

Воспитание на материалах темы…

Тип урока и примененной педагогической технологии…

Вид контроля: самоконтроль, взаимоконтроль, экспертная оценка

Цель первого этапа – проверить уровни обученности и обучаемости (по методикам, указанным в Приложении 2), а также первоначальные уровни сформированности следующих умений и навыков учеников:

1. Владение методами, способами и приемами мыслительной деятельности, а именно умениями:

- анализировать наблюдаемые предметы и явления, выделять в них существенное, главное, отбрасывать второстепенное и находить общее;

- выявлять причинно-следственные связи и отношения объектов, систематизировать факты на новом уровне;

- концентрировать общие положения, отыскивать доказательства, путем абстрагирования и обобщения раскрывать сущность новых понятий;

- видеть проблему и находить несколько способов ее решения с целью выявления наиболее рационального и оригинального;

- ставить цель и определять направления поиска, осуществлять перенос усвоенных знаний и способов деятельности в новые условия и для дальнейшего самообразования;

2. Владение навыками самостоятельного планирования и рациональной организации процесса обучения познавательной деятельности.

3. Наличие познавательной потребности, внутренних установок, побуждающих к самостоятельной деятельности по овладению стереометрией.

Целью второго этапа являлось обучение школьников стереометрии с использованием разработанной модели обучения. На третьем этапе происходила экспериментальная проверка эффективности процесса обучения с использованием разработанной модели обучения.

Первоначально, с учащимися были проведены методики на выявление уровней обученности и обучаемости.

Выявление первоначального уровня сформированности вышеперечисленных умений и навыков происходило следующим образом.

1. Учитель выбирает небольшой по объему новый учебный материал базисного характера на 7-8 минут работы.

Первое следствие аксиом стереометрии.

2. Учитель перед изучением нового повторяет изученный материал, необходимый для усвоения новых знаний.

Сформулируйте аксиомы планиметрии и стереометрии.

3. Учитель объясняет новый материал.

Следствие 1. Через прямую и не лежащую на ней точку проходит плоскость и притом только одна. (учащиеся записывают формулировку теоремы).

Дано:

Доказать:


Доказательство: Заметим, что теорема содержит два утверждения:

1. О существовании плоскости.

2. О единственности плоскости.

а) Рассмотрим прямую а и не лежащую на ней точку М. Докажем, что через прямую а и точку М проходит плоскость. Отметим на прямой а две точки: P и Q. Точки M, P и Q не лежат на одной прямой, поэтому согласно первой аксиоме через эти точки проходит некоторая плоскость

. Так как 2 точки прямой а (P и Q) лежат в одной плоскости
, то по второй аксиоме плоскость
проходит через прямую а.