Определение. Две скрещивающиеся прямые называются перпендикулярными, если они образуют прямой угол.
Определение. Два отрезка называются перпендикулярными, если они лежат на перпендикулярных прямых. Угол между двумя отрезками – это угол между соответствующими прямыми.
2. Проверьте усвоение теоретического материала. Ответьте на вопросы для самоконтроля
1. Что называется углом в пространстве?
2. Сформулируйте определение угла между двумя пересекающимися прямыми в пространстве.
3. Какие пересекающиеся прямые в пространстве называются перпендикулярными?
4. Какие лучи в пространстве являются соноправленными?
5. Как найти угол между скрещивающимися прямыми?
6. Сформулируйте теорему об углах с соноправленными сторонами.
3. Примите участие в учебной беседе. Материал для беседы
1. Докажите, что через точку прямой в пространстве можно провести перпендикулярную прямую. Сколько таких прямых можно провести через данную точку?(бесконечно много).
2. В кубе АBCDA1B1C1D1 найдите углы между скрещивающимися прямыми: а) АD и A1C1; б) АС1 и DD1; a) 45o; б) tg 4= Ö2.
3. В кубе АBCDA1B1C1D1 докажите перпендикулярность прямых: АD и А1B1;АС и B1D1; АС и DD1.
4. Прямые a и b параллельны. Прямые a и c пересекаются под прямым углом. Изобразите взаимное расположение прямых b и c и укажите угол между ними (рассмотрите различные случаи).
4. Самостоятельно выполните задания, затем проверьте решение
1. Докажите, что пересекающиеся диагонали двух соседних граней куба образуют угол 60о.
2. Найдите угол между диагональю куба и пересекающим ее ребром куба.
3. В правильной четырех угольной пирамиде со стороной основания, равной боковому ребру, найдите угол между стороной основания и скрещивающимися с ней боковым ребром.
6. Проверьте освоение данного модуля, выполните контрольные задания
Основной уровень:1. В пирамиде все грани которого – правильные треугольники, найдите угол между высотами этих треугольников, проведенных к общему ребру. 2. В треугольной призме, боковыми гранями которого являются квадраты, найдите угол между пересекающимися диагоналями боковых граней.
Повышенный уровень: На поверхности куба найдите точки из которых диагональ куба видна под наименьшим углом.
Литература:
Перельман Я.И. Занимательная геометрия. – М.: ВАП, 1994.
1. Ознакомьтесь со следующими теоретическими положениями
Определение. Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.
Теорема (признак перпендикулярности прямой и плоскости, достаточное условие перпендикулярности прямой и плоскости).Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна и самой плоскости.
Доказательство. Пусть прямая а перпендикулярна прямой b1,b2 плоскости b, пересекающиеся в точке О. Рассмотрим произвольную прямую b плоскости b.Проведем через точку О прямые a', b' соответственно, параллельным прямым а и b. Для доказательства параллельности прямой а, b, достаточно доказать перпендикулярность прямых a', b'. Для этого в плоскости b проедем прямую, пересекающую прямую b1, b2, b' в точках B1, B2, B соответственно. Отложим на прямой а' от точки О равные отрезки ОС, ОD и соединим точки C, D с точками B1,B2.В треугольнике OB1C и OB1D=(по первому признаку равенства треугольников). Отсюда следует, B1C=B1D. Аналогично B2C=B2D. Треугольник B1B2C = треугольнику B1B2D (по третьему признаку равенства треугольников). Отсюда следует, угол CB1B = углу DB1B. Треугольник B1BC = треугольнику B1BD (по первому признаку). Таким образом, BC=BD. Треугольник OBC = треугольнику OBD (по третьему признаку). Отсюда следует, угол BOC = углу BOD=90o, т. е. а’ перпендикулярна b’.
Определение. Пусть точка А не принадлежит плоскости p. Проведем прямую а, проходящую через эту точку и перпендикулярную p.Точку пересечения прямой а с плоскостью p обозначим О. Отрезок АО называется перпендикуляром, опущенным из точки А на плоскость p.
Определение.Перпендикуляр, опущенный из вершины пирамиды на плоскость её основания, называется высотой пирамиды.
Определение. Ортогональным проектированием называется параллельное проектирование в направлении прямой, перпендикулярной плоскости. Ясно, что ортогональное проектирование обладает всеми свойствами параллельного проектирования.
Определение. Цилиндр называется прямым, если его образующие перпендикулярны плоскости основания.
2. Проверьте освоение теоретического материала. Ответьте на вопросы для самоконтроля
1. Какая прямая называется перпендикулярной плоскости?
2. Сформулируйте признак перпендикулярности прямой и плоскости.
3. Какой отрезок называется перпендикулярным?
4.Что называется ортогональным проектированием.
5. Какой цилиндр является прямым?
6. Что называется высотой пирамиды?
3. Примите участие в учебной беседе. Материал для беседы
1. Верно ли, что если прямая перпендикулярна каким-нибудь двум прямым плоскости, то она перпендикулярна этой плоскости?
2. Докажите, что в прямоугольной пирамиде боковое ребро перпендикулярно плоскости основания.
3. Найдите диагональ прямоугольного параллелепипеда, рёбра которого равны a, b, c.
4. Докажите, что если прямая а перпендикулярна плоскости a и прямая b параллельна прямой а, то прямая b также перпендикулярна плоскости a.
5. В правильной треугольной пирамиде сторона основания равна а, боковое ребро b. Найдите высоту h пирамиды.
4. Самостоятельно выполните задания, затем проверьте решение
1. Докажите, что в прямоугольном параллелепипеде диагональ основания перпендикулярна пересекающему её боковому ребру.
2. Докажите, что если прямая a перпендикулярна плоскости a и плоскость b÷÷a, то прямая а перпендикулярна плоскости b.
3. В кубе ABCDA1B1C1D1 с ребром а найдите расстояние: от вершины А1 до плоскостей АВС и АВ1D1; от вершины А до плоскости ВВ1D1.
4. Докажите, что через любую точку пространства проходит единственная прямая, перпендикулярная данной плоскости.
6. Выполните контрольные задания
Основной уровень:1. Докажите, что через любую точку пространства проходит единственная плоскость, перпендикулярная данной прямой. 2. В правильной четырёхугольной пирамиде сторона основания а, высота h. Найдите боковое ребро пирамиды. 3. Докажите, что плоскость a и прямая b, не лежащая плоскости a, перпендикулярные одной и той же прямой а, параллельны.
Повышенный уровень: Что представляет собой геометрическое место точек, расположенных на прямых, проходящих через данную точку на прямой и перпендикулярных этой прямой?
Литература: Никольская И.Л. Семёнов Е.Е. Учимся рассуждать и действовать. – М.: Просвещение, 1989.
1. Ознакомьтесь со следующими теоретическими положениями
Определение. Наклонной к плоскости называется прямая, пересекающая эту плоскость и не перпендикулярная ей. Наклонной также называют отрезок, соединяющей точку, не принадлежащую плоскости, с точкой плоскости и не являющийся перпендикуляром.
Теорема (о трёх перпендикулярах, достаточное условие перпендикулярности двух прямых). Если прямая лежащая в плоскости, перпендикулярной ортогональной проекции наклонной на эту плоскость, то она перпендикулярна и самой наклонной.
Доказательство. Пусть прямая а плоскости a перпендикулярна проекции ОВ наклонной АВ. Т. к. прямая АО перпендикулярна плоскости a, то АО перпендикулярна прямой а, лежащей в этой плоскости. Поэтому прямая а будет перпендикулярна двум пересекающимся прямым АО и ОВ. По признаку перпендикулярности прямой и плоскости прямая а перпендикулярна плоскости АОВ, и Þ она будет перпендикулярна наклонной АВ.
Теорема. Перпендикуляр, проведённый из точки к плоскости, короче всякой наклонной, проведённой из той же точки к той же плоскости.
Доказательство.
Пусть АО перпендикуляр к плоскости a, АВ – наклонная к этой плоскости. Треугольник АОВ – прямоугольный, АО –катет, АВ – гипотенуза отсюда следует, что АО<АВ.
Определение. Углом между наклонной и плоскостью называется угол между этой наклонной и её ортогональной проекцией на эту плоскость. Считают также, что прямая, перпендикулярная плоскости, образует с ней прямой угол.
Теорема. Угол между наклонной и плоскостью является наименьшим из всевозможных углов между этой наклонной и прямыми, лежащими в данной плоскости.
Доказательство.
Пусть а- наклонная к плоскости a, О- их точка пересечения, b- ортогональная проекция наклонной, с- прямая в плоскости a, проходящая через точку О. Требуется доказать, что угол между прямыми а и b меньше угла между прямыми а и с.Для этого на прямой а возьмём точку А, отличную от точки О и ее ортогональную проекцию В. На прямую с отложим отрезок ОС, равный ОВ. На прямую с отложим отрезок ОС, равный ОВ. В треугольниках АОВ и АОС сторона АО- общая, ОВ=ОС, АВ<АС отсюда следует, что угол АОВ меньше угла АОС.