При работе по группам в среднем может получиться от 6 до 10 групп, т.е.2-3 группы будут иметь одинаковые варианты. В этом случае работа организуется по усмотрению учителя.
(По учебнику Атанасяна Л.С., Бутузова Б.Ф. и др. Геометрия 7-9)
Цель: закрепить, обобщить, систематизировать, оценить знания по данной теме.
План урока:
Организационный момент (2-3 мин).
Актуализация знаний (3-8 мин).
Тестирование (8-10 мин).
Групповая работа (15-20 мин).
Подведение итогов урока. Постановка домашнего задания (2 мин).
Организационный момент. Сообщается тема, цель урока. Настраиваем класс на работу. Даём стимул на получение хороших оценок.
Повторение основных определений и свойств. Проводится фронтальный опрос учащихся, желательно слабых учеников по следующим вопросам: определения треугольника, медианы, биссектрисы, высоты, равнобедренного треугольника; его свойства, первый признак равенства треугольников.
Тест на знание определений и свойств равнобедренного треугольника (см. приложение лист 3). Каждому ученику выдаются листочки с заданиями. Ответы пишутся под копирку, один из листочков сдается учителю. Тест тут же проверяется, и ставятся оценки.
Групповая работа. Работают в группе по 4 человека. Разбирают задачи. Каждый берёт на себя по 1-2 задачи на объяснение. Учитель по выбору может спросить любого ученика. Объяснение задачи можно передавать другому ученику ответственному за эту же задачу. Ученики рассказывают решение с места. Учитель записывает на доске основные моменты. Остальные проверяют и дополняют ответы.
Вариант 1.
1. Запишите все треугольники, изображенные на рисунке
2. В Δ EFG EF=FG, EK=LG. Определите вид треугольников EFG и KFL.
3. Чем отличается биссектриса угла от биссектрисы треугольника?
4. В равнобедренном Δ ABCAB=BC. Докажите равенство его медиан AM и CN.
5. Периметр равнобедренного треугольника равен 36 см. Основание равно 6 см. Найти боковую сторону данного треугольника.
Вариант 2.
1. Какие линии совпадут, если треугольник, вырезанный из бумаги, перегнуть по его биссектрисе? Почему?
2. В равнобедренном Δ CEFCE=CF. Докажите равенство его биссектрис EL и FK.
3. В Δ ABC (см. рис) AC=BC,
. Определите вид Δ ABC и ΔDEC.4. Периметр равнобедренного треугольника равен 42 см., боковая сторона составляет 2/7 периметра. Найдите основание данного треугольника.
5. Треугольники ABC и OPQ равны. Периметр Δ ABC равен 40 см., AB=17см., PQ=5см. Найти остальные стороны треугольников.
Вариант 3.
1. Может ли треугольник быть выпуклым? Почему?
2. Может ли высота треугольника лежать:
внутри треугольника;
вне треугольника;
на его стороне?
3. Сформулируйте второй признак равенства треугольников для равнобедренных треугольников.
4. В Δ EFGEP=FQ и
Определите вид треугольников EFG и GPQ.5. Периметр равнобедренного треугольника равен 32 см., боковая сторона больше основания на 4 см. Найдите стороны данного треугольника.
V. Подведение итогов урока. Задание домашнего задания.
Учащиеся сообщают результаты их работы, поощряют лучшие ответы. Подводят итоги урока. Выясняют, что ещё не усвоено в чём возникли трудности.
(По учебнику Атанасяна Л.С., Бутузова Б.Ф. и др. Геометрия 7-9)
Цель:
обобщить изученный материал;
сформировать умения применять математические знания к решению задач;
выявить и устранить пробелы в знаниях учащихся.
План урока:
Организационный момент (2-3 мин).
Актуализация знаний (5-8 мин).
Фронтальная работа (7-9 мин).
Групповая работа (10-12 мин).
Математический диктант (3-4 мин).
Подведение итогов урока. Постановка домашнего задания (2 мин).
Организационный момент.
Цель: настроить класс на хорошую работу. Дать стимул для получения хороших отметок.
Повторение признаков подобия и теоремы об отношении площадей подобных фигур. Доска заранее разбивается на 4 части, в каждой из которых выполняется чертёж и записывается условие и заключение соответствующего признака или теоремы (см. приложение лист 4). Вызвать к доске четырёх учащихся, предложив каждому заполнить пробелы и выполнить, где это нужно дополнительные построения.
Коллективная работа с доской.
Пока учащиеся готовятся к ответу, класс решает (устно) задачи по готовым чертежам.
Дайте определение подобных фигур. Какие из приведённых на доске фигур являются подобными? Какие из приведённых параллельно треугольников являются подобными?
В трапеции АВСD проведены диагонали АС и ВD. В силу, какого признака подобия треугольников Δ COB~Δ AOD?
В прямоугольном треугольнике АВС из вершины прямого угла опущена на гипотенузу высота СD, AC=6, DB=9. Найти отношение площадей треугольников АСD и CDB.
Боковая сторона и основание одного равнобедренного треугольника соответственно равны 34 см. и 20 см., а другого 17 и 10. Определите подобные ли это треугольники.
Прослушать вызванных ранее учеников, которые доказывали один из признаков подобия треугольников, и выяснить, что в доказательстве каждого из двух последних признаков отличаются лишь признаки равенства треугольников в зависимости от данных.
Дополнительные вопросы отвечающим:
в прямоугольном треугольнике проекции катетов на гипотенузу равны 25 и 16. Найдите катеты, высоту.
Приведите примеры из жизни, которые приводят к понятию подобных фигур.
Групповая работа.
Класс разбивается на группы по 4 человека. Каждая группа решает задачи на выданной карточке. Через 8 мин. по вариантам спрашиваются задачи с места по выбору учителя. Если человек в группе не отвечает, спрашивают другую группу, у которой тот же вариант.
Вариант 1
Дано:
Δ АВС - прямоугольный;
DE^AB.
Докажите, что треугольники АВС и АЕD подобны;
Найдите катеты Δ АВС, если АВ=13 см., АЕ=5,2 см., DE=2 cм;
Найдите отношение площадей Δ ABC и Δ AED.
Вариант 2
Дано:
ABCD- параллелограмм;
BD- диагональ;
AF- произвольный отрезок;
BO=6 см;
OD=18 см.
Укажите подобные треугольники;
Определите коэффициент подобия;
Найдите отношение их площадей.
Вариант 3
Дано:
Δ АВС;
BD- высота;
MP^BD; BM=5 см;
BP=8 см; BC=24см.
Доказать, что Δ BOP~Δ BDC;
Найти АВ;
Найти отношение площадей треугольников MPB и ABC.
Математический диктант.
Диктант пишется под копирку один вариант учителю, другой ученикам. Проверка осуществляется тут же.
Если вы согласны с утверждением то поставьте знак "+", если не согласны то знак "-".
Имеются два треугольника, они являются подобными, если
отношение их площадей равно 2;
одна сторона в два раза больше другой;
три угла равны, а одна сторона треугольника пропорциональна соответствующей стороне другого треугольника;
отношение соответствующих сторон равно 2;
отношение средних линий треугольников равно отношению оснований.
Подведение итогов урока. Постановка домашнего задания.
Учащимся сообщают результаты их работы, поощряются лучшие ответы.
Методические рекомендации:
Количество доказательства записанного на доске может варьироваться по усмотрению учителя.
В зависимости от времени можно также сократить число устных задач.
(По учебнику Атанасяна Л.С., Бутузова Б.Ф. и др. Геометрия 7-9)
Цель:
закрепить умения и знания, полученные ранее;
применить полученные знания для решения задач связанных с треугольниками.
План урока:
Организационный момент (2-3 мин).
Актуализация знаний (3-4 мин).
Фронтальная работа с классом (10-13 мин).
Самостоятельная работа (17-20 мин).
Подведение итогов урока. Постановка домашнего задания (2 мин).
Организационный момент.
Настраиваем класс на работу. Сообщаем цель урока.
II. В начале урока проводится разминка фронтально с классом: повторение основных теоретических положений по данной теме.
1) Сформулируйте определение треугольника:
равнобедренного;
равностороннего;
прямоугольного.
2) Перечислите свойства равнобедренного треугольника.
3) Сформулируйте признаки равнобедренного треугольника.
4) Можно ли назвать равносторонний треугольник равнобедренным?
5) Какие треугольники называются равными?
6) Какие элементы называются соответственными?
7) Сформулируйте:
1-й признак равенства треугольников;
2-й признак равенства треугольников;
3-й признак равенства треугольников.
8) Какие треугольники называются подобными?
9) Что значит пропорциональные стороны?
10) Что такое коэффициент подобия?
11) Сформулируйте:
1-й признак подобия треугольников;
2-й признак подобия треугольников;
3-й признак подобия треугольников.
12) Назовите:
формулу для вычисления площади треугольника;