Ответ: 18 чисел.
7. Имеется девять различных книг, четыре из которых – учебники. Сколькими способами можно расставить эти книги на полке так, чтобы все учебники стояли рядом?
Решение: Сначала будем рассматривать учебники как одну книгу. Тогда на полке надо расставить не 9, а 6 книг это можно сделать Р6 способами. В каждой из полученных комбинаций можно выполнить Р4 перестановок учебников. Значит, искомое число способов расположения книг на полке равно произведению Р6·Р4 = 6! ·4! = 720·24 = 17280.
Ответ: 17280 способов.
8. Сколькими способами 9 человек могут встать в очередь в театральную кассу?
Решение: Число способов равно числу перестановок из 9 элементов.
Р9=9!=1∙2∙3∙4∙5∙6∙7∙8∙9=362880.
Ответ: 362880 способов.
9. В расписании на понедельник шесть уроков: алгебра, геометрия, биология, история, физкультура, химия. Сколькими способами можно составить расписание на этот день так, чтобы два урока математики (алгебра и геометрия) стояли рядом?
Решение: Рассмотрим алгебру и геометрию как один урок. Тогда расписание надо составить не из 6, а из 5 уроков – Р5 способов. В каждой из полученных комбинаций можно выполнить Р2 перестановки алгебры и геометрии. Значит, искомое число способов составления расписания:
Р5∙Р2=1∙2∙3∙4∙5∙1∙2= 120∙2=240
Ответ: 240 способов.
7. Подведение итогов. Итак, вы познакомились с некоторыми правилами комбинаторики и применили их при решении задач. Какие это правила?
8. Домашнее задание:
1. В кафе имеются три первых блюда, пять вторых блюд и два третьих. Сколькими способами посетитель кафе может выбрать обед, состоящий из первого, второго и третьего блюд?
Решение. Первое блюдо можно выбрать 3 способами. Для каждого выбора первого блюда существует 5 возможностей выбора второго блюда. Значит, первые два блюда можно выбрать 3·5 способами. Наконец, для каждого выбора третьего блюда, т.е. существует 3·5·2 способов составления обеда из трех букв. Итак, обед из трех букв может быть составлен 30 способами.
2. Курьер должен разнести пакеты в 7 различных учреждений. Сколько маршрутов он может выбрать?
Решение: Число маршрутов равно числу перестановок из 7 элементов.
Р7=7!= 1∙2∙3∙4∙5∙6∙7=5040
Ответ: 5040 маршрутов.
3. Имеется девять различных книг, четыре из которых – учебники. Сколькими способами можно расставить эти книги на полке так, чтобы все учебники стояли рядом?
Решение: Сначала будем рассматривать учебники как одну книгу. Тогда на полке надо расставить не 9, а 6 книг это можно сделать Р6 способами. В каждой из полученных комбинаций можно выполнить Р4 перестановок учебников. Значит, искомое число способов расположения книг на полке равно произведению Р6·Р4 = 6! ·4! = 720·24 = 17280.
4. Вычислите значение дроби:
а) ; б) ; в) ; г) ; д) ; е)III. Контролирующий этап. Повторное проведение и обработка тестов на психодиагностику познавательных процессов, оценку мышления у школьников. Повторное задание на выборочное решение задач. Обработка результатов и сравнение с результатами констатирующего этапа.
Проведение психодиагностического теста на исследование гибкости мышления.
Обработка результатов:
Кол-во уч-ся по списку | Кол-во уч-ся, выполнивших тест | Показатель гибкости мышления (кол-во составленных слов) | |||
Высокий (21 и более) | Средний (13-20) | Низкий (7-12) | |||
31 | 29 | 14 | 12 | 1 |
Сравнение результатов с результатами констатирующего этапа представлены в диаграмме. Показатель гибкости мышления учащихся значительно увеличился.
Проведение психодиагностического теста на изучение логической памяти.
Обработка результатов:
Кол-во уч-ся по списку | Кол-во уч-ся, выполнивших тест | Показатель развития логической памяти | ||
Высокий | Средний | Низкий | ||
31 | 29 | 13 | 15 | 1 |
Сравнение результатов с результатами констатирующего этапа представлено в диаграмме. Показатель развития логической памяти учащихся значительно увеличился – большее количество учащихся справилось с заданием верно.
Задания на выборочное решение задач. Учащимся предлагается три задачи и дается задание: решить две из них (при желании – три).
Задача 1. В первый день магазин продал 32% имевшегося ситца, а во второй день 7%. После этого осталось 305 м. сколько ситца поступило в магазин?
Решение: 1) 32+7=39 (%)-продали за 2 дня
2) 100-39=61 (%) – осталось.
3)305:0,61=500 (м) – ситца поступило в магазин
Ответ: 500 м ситца поступило в магазин.
Задача 2. Сколькими способами 5 мальчиков и 5 девочек могут занять в театре в одном ряду места с 1 по 10? Сколькими способами они могут это сделать, если мальчики будут сидеть на нечетных местах, а девочки – на четных?
Решение. Если мальчики и девочки сядут в один ряд в произвольном порядке, то это можно сделать Р10=10!=3628800 способами. Если мальчики сядут на нечетные места, то существуют Р5 способов их расположения. Столькими же способами могут расположиться девочки на четных местах. Каждому способу расположения мальчиков соответствует Р5 способов расположения девочек.
Значит, расположиться так, что мальчики будут сидеть на нечетных местах, а девочки – на четных, можно Р5·Р5=5! ·5!=120·120=14400 способами.
Задача 3. В коробке 2 красных, 4 желтых, 3 зеленых кубика. Вытаскиваем наугад 5 кубиков. Какие из следующих событий невозможные, какие – случайные, а какие – достоверные:
А = {все вынутые кубики одного цвета};
В = {все вынутые кубики разных цветов};
С = {среди вынутых кубиков есть кубики разных цветов};
D = {среди вынутых есть кубики всех трех цветов}.
Решение:
Событие А – невозможное: нельзя вынуть из коробки пять кубиков одного цвета, так как в ней каждого цвета меньше пяти кубиков.
Событие В – тоже невозможное: кубики в коробке трех цветов, а вынимаем пять.
Событие С – достоверное: ведь все пять кубиков, как мы уже выяснили не могут быть одного цвета, поэтому среди них обязательно есть кубики хотя бы двух цветов.
Событие D – случайное.
Обработка результатов:
Кол-во уч-ся по списку | Кол-во уч-ся, выполнивших задание | 3 задачи | 1-2 задачи | 1-3 задачи | 2-3 задачи |
31 | 29 | 13 | 7 | 6 | 3 |
Сравнение результатов с констатирующим этапом представлено в диаграмме.
Большее количество учащихся решило все три задачи верно, в том числе задачи на комбинаторику и вероятность, что говорит об успешности формирующего этапа эксперимента.
Значит, возможно сформировать первоначальное представление о вероятности и научить решать комбинаторные задачи учащихся 5-6 классов, используя методы проблемного обучения, занимательные задачи, задачи, содержащие жизненные ситуации и тем самым повысить показатель логической памяти и гибкости мышления у учащихся 5-6 классов.
Заключение
Исследуя тему «Методика обучения решению комбинаторных задач и формирование первичного представления о вероятности» проанализировали научно-методическую литературу, выявили уровень логического мышления учащихся 5-6 классов основной школы. Так же изучили психологические особенности учащихся 5-6 классов основной школы, изучили методику ознакомления учащихся с задачами на комбинаторику. Разработаны фрагменты уроков.
Цель исследования выполнена – изучили методику обучения решению комбинаторных задач и задач на вероятность в 5-6 классах основной школы.
Гипотеза, положенная в основу исследования подтверждается – возможно сформировать первоначальное представление о вероятности и научить решать комбинаторные задачи учащихся 5-6 классов, используя методы проблемного обучения, занимательные задачи.
Библиография
1. Бардиер Г.Л. «Тонкости психологической помощи детям», Издательство Генезис, М., 2002.
2. Бунимович Е.А., Булычев В.А. Вероятность и статистика. Пособие для общеобразовательных учебных заведений. – М.: Дрофа, 2002.
3. Бунимович Е.А., Булычев В.А. Основы статистики и вероятность. 5-9 кл.: Пособие для общеобразовательных учреждений – М.: Дрофа, 2004.
4. Вентцель Е.С., Овчаров Л.А. Задачи и упражнения по теории вероятностей: Учебное пособие для студ.втузов – 5 изд., испр. – М.: Издательский центр «Академия», 2003.
5. Выготский Л.С. Воображение и творчество в детском возрасте. Спб.: Союз, 1997.
6. Дорофеев Г.В. Петерсон А.Г. Математика. 5-й класс. Часть 1: Учеб. для общеобразоват. учеб.заведений. – М.: издательство «Ювента», 2002.
7. Дорофеев Г.В. Петерсон А.Г. Математика. 5-й класс. Часть 2: Учеб. для общеобразоват. учеб.заведений. – М.: издательство «Ювента», 2002.