Смекни!
smekni.com

Методика обучения решению комбинаторных задач (стр. 10 из 15)

8. Дорофеев Г.В. Петерсон А.Г. Математика. 6-й класс. Часть 1: Учеб. для общеобразоват. учеб.заведений. – М.: издательство «Ювента», 2002.

9. Дорофеев Г.В. Петерсон А.Г. Математика. 6-й класс. Часть 2: Учеб. для общеобразоват. учеб.заведений. – М.: издательство «Ювента», 2002.

10. Дорофеев Г.В. Петерсон А.Г. Математика. 6-й класс. Часть 3: Учеб. для общеобразоват. учеб.заведений. – М.: издательство «Ювента», 2002.

11. Дорофеев Г.В., Суворова С.Б., Шарыгин И.Ф. и др. Математика. 6-й класс: Учеб. для общеобразоват. учеб.заведений - М.: Дрофа, 1997.

12. Дорофеев Г.В.Математика. 6-й класс: Рабочая тетрадь: К учебнику под редакцией Г.В.Дорофеева, И.Ф.Шарыгина "Математика 6". - М.: Дрофа, 1998.

13. Крутецкий В.А. Психология: Учеб. для учащ. пед. училищ – М.: Просвещение, 1986.

14. Крылов И.А. Басни. – М.: Просвещение, 1985.

15. Локалова Н.П. «Уроки психологического развития в средней школе (5-6 классы), издат. Ось, М., 1989.

16. Макарычев Ю.Н., Миндюк Н.Г. Алгебра. Элементы статистики и теории вероятностей. Учебное пособие для учащихся 7-9 классов общеобразовательных учреждений/ под редакцией Теляковского С.А. – М., «Просвещение», 2003.

17. Немов Р.С. Психология. Учеб. для студ.высш.пед.учеб.заведений – в 2 кн. Кн.1. общие основы психологии. – М.: Просвещение: Владос, 1994.

18. Нестеренко Ю.В., Олехник С.Н., Потапов М.К. Лучшие задачи на смекалку. – М.: Научно-технический центр "Университетский": АСТ-ПРЕСС, 1999.

19. Никольский С.М., Потапов М.К., Решетников Н.Н., Шевкин А.В. Арифметика 5-й класс: Учебник для общеобразовательных учебных заведений – Издат. Отдел УНЦ ДО МГУ, 1997

20. Никольский С.М., Потапов М.К., Решетников Н.Н., Шевкин А.В. Арифметика 6-й класс: Учебник для общеобразовательных учебных заведений – Издат. Отдел УНЦ ДО МГУ, 1997

21. Оганесян В.А. Колягин Ю.М., Луканкин Г.Л., Санинский В.Я. Методика преподавания математики в средней школе/ Общая методика. Учебное пособие для студ. физ.-мат.фак.пед. институтов – М.: Просвещение, 1980.

22. Петровский А.В. Практические занятия по психологии. – М., 1972

23. Савельев Л.Я. Комбинаторика и вероятность. – Новосибирск, Наука, 1975.

24. Савин А.П. Энциклопедический словарь юного математика - М.: Педагогика-Пресс, 1997.

25. Свешникова А.А. Сборник задач по теории вероятностей, математической статистике и теории случайных функций – М., Наука, 1965.

26. Стойлова Л.П. Математика: Учеб. пособие для студ. сред. пед. учеб. заведений – М.: Издательский центр «Академия», 1998

27. Тюрин Ю.Н., Макаров А.А., Высоцкий И.Р., Ященко И.В. Теория вероятностей и статистика. – М.: МЦНМО: АО «Московские учебники», 2004.

28. Тюрин Ю.Н., Макаров А.А., Высоцкий И.Р., Ященко И.В. Теория вероятностей и статистика. – 2-е изд., переработанное. – М.: МЦНМО: АО «Московские учебники», 2008.

29. Фадеев Д.К., Никулин М.С., Соколовский И.Ф. Элементы высшей математики для школьников. - М.: Наука, главная редакция физико-математической литературы, 1987.

30. Журнал «Математика в школе» №9, 2001

31. Журнал «Математика в школе» №5, 2003

32. Журнал «Математика в школе» №6, 2003

33. Журнал «Математика в школе» №5, 2004

34. Журнал «Математика в школе» №6, 2004

35. Журнал «Математика в школе» №7, 2004.

Приложения

Приложение 1

Сборник основных правил комбинаторики и упражнений для их применения

1. Примеры комбинаторных задач

Пример 1. Из группы теннисистов, в которую входят четыре человека – Антонов, Григорьев, Сергеев и Федоров, тренер выделяет пару для участия в соревнованиях. Сколько существует вариантов выбора такой пары?

Решение: Составим сначала все пары, в которые входит Антонов (для краткости будем писать первые буквы фамилий). Получим три пары: АГ, АС, АФ.

Выпишем теперь пары, в которые входит Григорьев, но не входит Антонов. Таких пар две: ГС, ГФ.

Далее составим пары, в которые входит Сергеев, но не входят Антонов и Григорьев. Такая пара только одна: СФ.

Других вариантов составления пар нет, так как все пары, в которые входит Федоров уже составлены.

Итак, мы получили 6 пар:

АГ, АС, АФ

ГС, ГФ

СФ,

т.е. 3·2·1=6. значит, существует всего шесть вариантов выбора тренером пары теннисистов из данной группы.

Способ рассуждений, которым мы воспользовались при решении задачи, называют перебором возможных вариантов.

Пример 2. Сколько трехзначных чисел можно составить из цифр 1, 3, 5, 7, используя в записи числа каждую из них не более одного раза?

При решении этой задачи сначала составляется древо всех возможных вариантов.

Первая цифра 1
3
5
7
Вторая цифра 3 5 7 1 5 7 1 3 7 1 3 5
Третья цифра
5
7
3
7
3
5
5
7
1
7
1
5
3
7
1
7
1
3
3
5
1
5
1
3

Заметим, что ответ на поставленный в примере вопрос можно получить, не выписывая сами числа и не строя дерево возможных вариантов. Рассуждать будем так. Первую цифру трехзначного числа можно выбрать четырьмя способами. Так после выбора первой цифры останутся три, то вторую цифру можно выбрать из оставшихся цифр уже тремя способами. Наконец, третью цифру можно выбрать (из оставшихся двух) двумя способами. Следовательно, общее число искомых трехзначных чисел равно произведению 4·3·2 = 24.

Ответ на поставленный в примере 2 вопрос мы нашли, используя так называемое комбинаторное правило умножения.

Пусть имеется n элементов и требуется выбрать один за другим некоторые k элементов. Если первый элемент можно выбрать n1 способами, после чего второй элемент можно выбрать из оставшихся n2 способами, затем третий элемент – n3 способами и т.д., то число способов, которыми могут быть выбраны все k элементов, равно произведению n1·n2·n3·…·nk.

Пример 3. Из города А в город В ведут две дороги, из города В в город С – три дороги, из города С до пристани – две дороги (рис. 1). Туристы хотят проехать из города А через города В и С к пристани. Сколькими способами они могут выбрать маршрут?


А В С Пристань Рис. 1

Решение. Путь из А в В туристы могут выбрать двумя способами. Далее в каждом случае они могут проехать из В в С тремя способами. Значит, имеется 2·3 вариантов маршрута из А в С. Так как из города С на пристань можно попасть двумя способами, то всего существует 2·3·2, т.е. 12 способов выбора туристами маршрута из города А к пристани.

Упражнения в данном пункте направлены на составление различных комбинаций и подсчет числа возможных вариантов этих комбинаций.

Упражнения

5. В кафе предлагают два первых блюда: борщ, рассольник – и четыре вторых блюда: гуляш, котлеты, сосиски, пельмени. Укажите все обеды из двух блюд, которые может заказать посетитель. Проиллюстрируйте ответ, построив дерево возможных вариантов.