Смекни!
smekni.com

Разработка технологий повторения темы Логика высказываний (стр. 6 из 24)

«Ольга заняла не первое место, а Нина — второе». Но тогда ложна первая часть ответа 2), а значит, то, что Поля на третьем месте - истина. Но тогда из ответа 3) получится, что Мария — на втором месте, как и Нина. А это противоречит условию задачи.

Других конкретизации рассматривать нет смысла, так как любая конкретизация предложения 2) или 3) диктует истинность или ложность первой или второй части в предложении 1), которые уже обеспечили получение ответа. Значит, найденный ранее ответ единственный.

1.3.2 Прием переструктурирования задачи

Переструктурирование заключается в изменении расположения уже имеющихся элементов задачи путем их перестановки или перегруппировки.

Задача 3

Акробат и собачонка

Весят два пустых бочонка.

Шустрый пес без акробата

Весит два мотка шпагата.

А с одним мотком ягненок

Весит, видите, бочонок.

Сколько весит акробат

В пересчете на ягнят?

Решение: Изобразим условие задачи наглядно (рис. 1), обозначив акробата буквой А, собачонка буквой С, ягненка буквой Я, бочонки буквой Б и мотки буквой М.

А+С=Б+Б

С=М+М

Я+М=Б (1)

А+С=Я+М+Я+М

Элементы из третьего равенства переставим в первое условие, заменив каждый бочонок ягненком с мотком шпагата (2).

В равенство (2) подставим элементы второго условия, т.е. заменим два мотка шпагата собачонкой (3).

А+С = Я + М + Я+М (2) А+С = 2Я + С (3)

Итак, А =2Я, акробат весит столько же, сколько и два ягненка.


1.3.3 Прием разбиения задачи на части

Если в задаче можно выделить самостоятельные части, то целесообразно сформулировать их отдельно и решить по очереди.

Задача 4. Заспорили три мудреца о том, кто из них самый мудрый. Наконец, они обратились к судье, славившемуся своей мудростью. «Скажи нам, справедливейший из судей, кто из нас самый мудрый?»

Задумался судья, а потом и говорит: «Вот перед вами лежат 5 тюбетеек: 3 из красного бархата, а 2 - из черного. Сейчас вам завяжут глаза и наденут тюбетейки на головы. Когда повязки с ваших глаз снимут, самый мудрый из вас скажет, какая тюбетейка у него на голове»,

Так и сделали. Сняли повязки с глаз: видит каждый перед собой красные тюбетейки на головах товарищей, а какая на своей голове — не знает. Наконец, один мудрец сказан: «О справедливейший из судей! Ты велел надеть на меня красную тюбетейку».

«Вот ты и есть самый мудрый из вас троих» - решил судья.

Как мудрец догадался, что на нем красная тюбетейка?

Решение: Так как всего было 5 тюбетеек:

3 красные и 2 черные, то возможны три различных варианта:

а) на трех мудрецов надели 2 черные и 1 красную тюбетейку;

б) на трех мудрецов надели 1 черную и 2 красные тюбетейки;

в) на трех мудрецов надели 3 красные тюбетейки.

Каждый случай можно рассмотреть отдельно.

Причем любая предыдущая подзадача помогает разобраться в последующей подзадаче.

В случае а) кто-то из мудрецов увидел бы или 2 черные тюбетейки (если на нем самом была красная), или 1 черную (если на нем была черная). А это противоречит условию, где сказано, что каждый увидел только красные тюбетейки.

В случае б) любой из собратьев обладателя черной тюбетейки увидел бы ее. А это тоже противоречит условию.

Остается случай в). К нему можно прийти без всяких дополнительных рассуждений.

Но тот, кто догадался о цвете своей тюбетейки, не знал, что каждый из спорщиков увидел только красные тюбетейки. Он мог предполагать, что на нем — черная. Но ему подсказало верный ответ молчание товарищей. Если бы кто-то из них увидел два черных головных убора, то сразу бы дал верный ответ относительно себя. Но молчание обоих свидетельствовало о том, что любой из них сомневался относительно того, какая тюбетейка у него на голове. А это могло быть только тогда, когда каждый увидел две красные тюбетейки.

1.3.4 Приемы моделирования

Моделью некоторого объекта А называется объект В, в каком-то отношении подобный оригиналу А, но не совпадающий с ним. Все обучение математике связано с изучением различных математических моделей: число, функция, уравнение, геометрические фигуры и т.д. Однако, работая с моделями, изучая их, учащиеся не осознают свою деятельность в этом аспекте. А школьники должны научиться изучать какие-то явления с помощью моделирования. Это существенно изменит отношение школьников к учебным занятиям.

Можно обучать приемам моделирования на таких доступных школьникам примерах, как таблицы, схемы, графы и т.п. Эти примеры имеют, быть может, не столько математическое, сколько общеинтеллектуальное значение. Рассмотрим различные приемы моделирования на конкретных задачах.

1 Прием моделирования на полупрямой

Если в задаче имеется множество объектов и требуется установить взаимоотношение между элементами этого множества, то задачу можно решать на полупрямой.

Задача 5. На вечеринку собрались четверо друзей: Аня. Вика. Миша и Коля. Коля пришел раньше Ани, но не был первым. Определите, в какой последовательности друзья приходили к месту встречи, если Вика пришла последней.

Решение: Построим модель описанной ситуации, считая обычный луч «линией времени». Друзья, пришедшие на вечеринку, обозначатся точками с соответствующими буквами. Условимся пришедшего на вечеринку раньше обозначать на полупрямой (первой буквой его имени) левее, пришедшего позже — правее. По порядку каждое условие отмечаем на полупрямой.

На рисунке 1, а) показано, что Коля пришел раньше Ани. По рисунку 1, б) мы видим, что кто-то из друзей опередил Колю, а следовательно, и Аню. Появление еще одной правой точки на рисунке 1, в) передает условие «Вика была последней». Тогда придется сделать вывод, что Миша пришел раньше всех. Последовательность явки друзей к месту встречи видна на рисунке 1, г).

2 Прием моделирования с помощью таблицы

Если в процессе решения необходимо установить соответствие между элементами двух или нескольких различных множеств, то целесообразно использовать таблицу. Поле таблицы представляет собой декартово произведение этих множеств. Количество входов в таблицу определяется количеством выделенных в задаче множеств.

Задача 6. В одном из московских вузов на разных курсах учатся четыре студента. Определить фамилию, имя, курс, на котором учится каждый студент, если известно следующее.

Борис прошлую летнюю сессию сдал на отлично;

Виктор должен был летом ехать на практику в Омск;

Иванов собирался поехать домой в Челябинск;

Антон был курсом старше Петра:

Борис и Орлов коренные москвичи:

Крылов в прошлом учебном году окончил школу и поступил на тот же факультет, на котором учился Зуев;

Борис иногда пользовался прошлогодними конспектами Виктора.

Решение: Построение модели начнем с выделения трех множеств: множество имен студентов, множество их фамилий и множество курсов. Таблица 2 с четырьмя входами охватывает все возможные соотношения между именем и фамилией, между именем и курсом и между курсом и фамилией.

Если теперь, в соответствии с условием, в таблицы 2 ставить знаки «минус» на заведомо невозможных парах элементов, то можно прийти к решению задачи.

Отметим в таблице данные из условия задачи.

Борис прошлую сессию сдал на отлично, следовательно, Борис не на I курсе — в клеточке (Борис; I) ставим знак «минус».

Виктор летом едет в Омск, а Иванов в Челябинск, значит, фамилия Виктора не Иванов — в клеточке (Виктор; Иванов) прочерк.

Антон курсом старше Петра, значит, Антон учится не на I курсе — в клеточке (Антон; I) появляется знак «минус».

Так как Борис и Орлов коренные москвичи, то фамилия Бориса не Орлов — в клеточке (Борис; Орлов) ставим прочерк.


Таблица 2

Имя, курс Фамилия Курс
Зуев Крылов Иванов Орлов I II III IV
Борис + - - - - - + +
Виктор - - - + - - - +
Антон - - + - - + - -
Петр - + - - + - - -
I - + - -
II - - + -
III + - - -
IV - - - +

Крылов в прошлом году окончил школу, т.е. сейчас он учится на I курсе — знак «+» в клеточке (Крылов; I). Ясно, что тогда ни Зуев, ни Иванов, ни Орлов не учатся на I курсе — в этих клеточках ставим прочерки.

Борис пользуется прошлогодними конспектами Виктора, значит, Виктор на один курс старше Бориса. Но мы знаем, что Борис уже не на I курсе, следовательно, Виктор учится не на I и не на II курсе - в клеточках (Виктор; I) и (Виктор; II) ставим прочерки.

По условию Иванов из Челябинска, а Борис коренной москвич, следовательно, Борис не Иванов - в клеточке (Борис; Иванов) прочерк.

Из таблицы видно, что на I курсе учится не Борис, не Виктор, не Антон. Следовательно, на I курсе учится Петр - в клеточке (Петр; I) появляется знак «+». В клеточках (Петр; II), (Петр; III) и (Петр; IV) прочерки.

Но на I курсе учится Крылов. Значит, Петр носит фамилию Крылов — в клеточке (Петр; Крылов) ставим знак «+». Ясно, что Петр не может быть ни Ивановым, ни Зуевым, ни Орловым, а также Крыловым не могут быть ни Борис, ни Виктор, ни Антон - во всех этих клеточках прочерки.

Обратим внимание на столбец «Иванов». Из него видно, что ни Борис, ни Виктор, ни Петр не носят фамилию Иванов. Следовательно, Ивановым может быть только Антон - в соответствующей клеточке ставим знак « + ». Тогда ясно, что ни Орлов, ни Зуев не носят имя Антон - в этих клеточках появляются знаки «минус».