В четвертой главе «Методика и результаты опытно-экспериментальной работы по проверке эффективности модели фундаментальной естественно-научной подготовки» проанализированы вопросы проектирования учебно-исследовательского измерительного стенда и особенности его программной оболочки. Подробно описаны этапы планирования педагогического эксперимента, назначение заданий (тренировочное, обучающее АОС и т.д.); приведено описание тем и целей их включения, определение количества вопросов в каждой теме и типов заданий.
Рабочими гипотезами исследования послужили следующие положения:
- предполагается, что естественный интерес к компьютеру у обучаемых позволит сформировать первичную мотивацию, а хорошая методическая проработка материала обеспечит формирование устойчивого интереса к повышению уровня базового образования,
- качество фундаментальной подготовки можно повысить, применяя в лабораторном практикуме математическое моделирование для выяснения сущности явлений и методы обработки результатов, которые позволяют количественное прогнозирование явлений,
- автоматизированные методы измерения физических величин с использованием аналого-цифровых преобразователей должны приобщить студентов к научно-исследовательской деятельности и стимулировать развитие творческих способностей,
- создание проблемных ситуаций и условий для преодоления информационных барьеров в процессе обучения с применением компьютерного сопровождения позволит активизировать познавательную деятельность и улучшит условия для самоподготовки и самоконтроля.
Для исследования развития мотивации познавательной деятельности студентов автором разработана оригинальная программная оболочка автоматизированного лабораторного стенда, включающая несколько функционально связанных подсистем (рис.3).
|
Комплекс автоматизированных обучающих модулей включает использование методов математического моделирования, мультипликацию, средства активного и доброжелательного диалога, а также полное методическое сопровождение.
Все они разработаны на высоком методическом и программном уровне и рассчитаны на современную вычислительную технику с широким использованием ее возможностей. Программные модули и их отдельные части могут быть использованы также и на факультативных занятиях по физике в средней школе.
Разработанный учебно-лабораторный комплекс внедрен в учебный процесс на кафедре физики Воронежского государственного технического университета и используется для обучения студентов всех технических специальностей, а также в ВВШ МВД РФ.
2. В настоящее время в отечественной психологии еще недостаточно экспериментальных данных, касающихся формирования мотивации учебной деятельности учащихся в компьютерной обучающей системе. Студенты по-разному воспринимают и объясняют причины своих неудач при выполнении заданий. Наиболее типичными объяснениями причин неуспешности являются следующие: недостаток способностей, недостаточность усилий, трудность контрольного задания, отсутствие везения. Однако усилие – единственная причина, которая находится под волевым контролем испытуемых, и, следовательно, она образует единственную причинную схему, не формирующую у учащихся неуверенности в себе, в своих возможностях улучшить собственные результаты. Усиление внутренней мотивации учебной деятельности подростков происходит за счет приписывания ими причин своих неуспехов внутреннему, нестабильному, но контролируемому фактору — собственным усилиям. Поэтому в программах тренинга мотивации путем изменения причинных схем предпочтение отдано «усилию» как наиболее оптимальной причине.
При исследовании психолого-педагогического механизма формирования в компьютерной среде мотивации познавательного интереса и возможности ее коррекции в процессе учебно-познавательной деятельности обучаемых цель эксперимента была сформулирована следующим образом: направить существующий интерес молодежи к компьютеру на повышение базового уровня подготовки по естественно-научным дисциплинам в системе компьютерного сопровождения преподавания. Конструктивная гипотеза эксперимента заключается в предположении, что за счет изменения содержания диалога обучаемого с компьютером можно ожидать формирования устойчивой внутренней мотивации и более сознательного и прочного усвоения знаний.
Следовательно, в силу системности педагогического процесса были определены следующие задачи эксперимента:
1) разработать в соответствии с изменившимися требованиями развитую подсистему контекстно зависимой помощи;
2) определить ее влияние на усиление внутренней мотивации учебной деятельности и желание улучшить собственные результаты;
3) показать возможность развития внутренней мотивации.
В исследовании приняли участие более тысячи студентов, из которых отобраны три группы: одна контрольную и две экспериментальные группы. В контрольной группе обучение расчету погрешностей проводилось по традиционной схеме без применения компьютерного сопровождения. В основу был положен традиционный метод преподавания и использовался набор фиксированных домашних заданий, самостоятельных, контрольных работ, при этом на аудиторных занятиях студентам предоставлялась самостоятельность при разработке способов выполнения тех или иных видов работ. В экспериментальных группах Э1 и Э2 использовались автоматизированные модули, но для второй группы Э2 из этих модулей были специально исключены все индивидуально ориентированные фрагменты. В результате проведения эксперимента подтверждена конструктивная гипотеза о возможности формирования внутренней мотивации к достижению результата по причинной схеме «нет результата – нет усилий» (рис.4).
Обозначения групп:
Э1 и Э2 – первая и вторая экспериментальные
К – контрольная группа,
Причинные схемы :
1 – нет усилий,
2 – нет везения,
3 – трудная задача,
4 – нет способностей.
Все данные в процентах.
Рис. 4. Результаты эксперимента по формированию внутренней мотивации
Кроме того, выявлено повышение успеваемости в экспериментальных группах на 0,5 балла (по пятибалльной системе), которое стало возможным не только за счет более тщательной проработки учебного материала на компьютеризированных аудиторных занятиях, но и часто за счет повышения первично полученной оценки на дополнительно проведенных студентами самостоятельных занятиях во внеучебное время в компьютерном классе кафедры физики. До проведения эксперимента на практических занятиях с использованием одинакового набора методик были выявлены субъективные причины неудач, высказанные обучаемыми во всех группах. Было отмечено также развитие у обучаемых основных компонентов информационной культуры.
3. Несмотря на имеющуюся в последнее время вполне справедливую острую критику технологии обучения, основанной преимущественно на работе памяти, обеспечение первого уровня усвоения учебного материала (воспроизведения терминов, конкретных процедур, основных понятий и правил) остается одной из основных проблем обучения.
На стадии тестирования, рассматриваемой в контексте целостной дидактической структуры, происходит установление связей между изучаемыми объектами (явлениями, процессами), выяснение их строения, состава, причинно-следственных зависимостей, т.е. осуществляется операция осмысления, а параллельно с ней - и операция запоминания.
Поэтому в ходе эксперимента была поставлена и вторая задача – разработка путей улучшения этого компонента учебного процесса на основе компьютерной поддержки преподавания. В расчетно-графических задачах студенты ставится перед необходимостью выполнения умственного действия, адекватного соответствующему элементу запоминаемой информации, и выражения его во внешнем плане в виде передачи информации компьютеру, который сравнивает ее с эталоном и выдает сообщение о правильности ответа.
После выполнения всего задания подводятся общие итоги, завершающиеся выставлением оценки. Обучающемуся предоставляется возможность многократного повторного выполнения действий, в которых были допущены ошибки. Создается ситуация, обеспечивающая появление у обучаемого стремления откорректировать неправильные действия (исправить ошибки). Она обеспечивается необходимостью выполнить то же самое задание в другом режиме (контроля), при котором оценка фиксируется компьютером в протоколе работы компьютерного класса кафедры физики.
Эксперимент показал, что компьютеризация существенно улучшает процесс накопления в памяти запаса формул и определений и соответственно облегчает их практическое использование при решении практических задач. А.В. Машуков с сотрудниками также отмечали быстрое и более глубокое усвоение учебного материала при активном внеаудиторном использовании тренировочных программ.
Основные результаты педагогического эксперимента:
- Разработанная автором и внедренная в учебный процесс методика формирования навыков научно-исследовательской деятельности при проведении лабораторного практикума с элементами автоматизации физического эксперимента и математической обработки результатов стимулирует развитие творческой активности студентов и ведет к повышению качества фундаментальной естественно-научной подготовки студентов инженерных специальностей.