Рис.1. Дополнительное содержание функциональных связей между компонентами компьютеризированной педагогической системы.
Индивидуализация и дифференциация обучения с одновременным повышением его эффективности, организация новых форм взаимодействия в процессе обучения, изменение содержания обучения, совершенствование управления образованием – это лишь небольшой перечень влияния, которое оказывает на объекты педагогической системы передача функций центрального элемента системы фундаментальным естественно-научным знаниям. Что касается субъектов этой системы – обучающихся, то изменение за счет компьютеризации процесса познания в направлении фундаментального естественно-научного образования обуславливает формирование способности к моделированию физических явлений, научного стиля исследования объектов, явлений и процессов, то есть формирование способной к самосовершенствованию всесторонне развитой личности. При обучении с использованием компьютера основные коммуникации проходят при невербальном общении, поэтому актуализируются требования герменевтического принципа методологии. Следование этому принципу должно быть направлено на то, чтобы обучаемый понимал смысл изучаемого материала. Герменевтика и переводится, как разъясняю, истолковываю.
Наши исследования и практический опыт работы выявили основные направления повышения качества фундаментальной естественно-научной подготовки современных студентов технического вуза:
- углубление теоретической подготовки,
- формирование материалистического мировоззрения,
- формирование аналитико-синтетического подхода к исследованию закономерностей физических явлений,
- формирование навыков моделирования физических явлений,
- использование методов математической обработки результатов эксперимента,
- развитие навыков автоматизации физического эксперимента,
- приобщение студентов к активному участию в научной работе,
- формирование компьютерной грамотности.
В разработанной нами модели фундаментальной естественно-научной подготовки инженеров в техническом вузе фундаментализация инженерного образования с использованием компьютерной поддержки преподавания кроме мотивационного фактора с учетом приведенной структуры учебных знаний обеспечивается:
- изучением частных факторов, отдельных закономерностей явлений, понятий, теоретических положений, которое осуществляется на базе фундаментальных идей и принципов.
- ориентацией на непрерывное и развивающее обучение при переходе от общей физики к специальным курсам выпускающих кафедр. Четко выраженный когнитивный характер и преемственность показаны на примере применения теории погрешностей к обработке результатов первых работ лабораторного практикума по физике.
- переходом от анализа к синтезу рассматриваемых явлений и их математическому и имитационному моделированию. Это способствует более глубокому пониманию сущности явлений. формированием устойчивых навыков владения средствами и технологией информационной культуры, освоением студентами научных методов экспериментальных исследований.
- результаты лабораторного практикума интерпретируются не только наглядным представлением функциональных зависимостей в виде гистограмм и графиков, описанием с помощью аналитических выражений, но и объяснением закономерностей с привлечением модельных представлений существующих теорий. Например, диодная модель p-n-перехода дает возможность определения количественных соотношений между параметрами прибора как с помощью машинной обработки и метода наименьших квадратов, так и с помощью применения графических экспресс-методов.
Рис. 2. Концептуальная модель фундаментальной естественно-научной подготовки.
В предложенной модели (рис. 2)лабораторный эксперимент является источником получения знаний и методом обучения, сочетающим наглядность и деятельность Он сводится не только к иллюстрации физических явлений, доказательству научных положений, но и знакомит с методами измерений и применяемыми приборами, дает возможность студенту самому оценить вклад в погрешность различных факторов. При проектировании содержания лабораторного практикума по физике его методологическую основу составили идеи системно-деятельностного подхода – базой воспитательного и образовательного процессов является личная деятельность обучаемого, а функция преподавателя заключается в умении направлять и регулировать эту деятельность в направлении повышения качества фундаментальной естественно-научной подготовки. Определенные таким образом направления повышения качества фундаментальной подготовки реализованы в Воронежском государственном техническом университете на примере курса физики в комплексе компьютерных средств сопровождения учебного процесса
Наши исследования показали, что лабораторный практикум как форма обучения представляет широкие возможности для реализации деятельностного подхода:
- обучаемые объединяются в относительно небольшие группы с близким уровнем знаний и умений,
- в этом случае наиболее естественным образом создается обучающая и воспитывающая среда, которая связана со спецификой данной формы обучения: определенные правила обучения, методика, цели и задачи,
- выполнение лабораторных работ практикума обеспечивает большую самостоятельность обучаемым, практически недоступную в других видах деятельности. В то же время преподаватель в случае необходимости может вмешаться в процесс обучения, осуществить индивидуальный подход к каждому учащемуся,
- среда обучения в таком практикуме отличается наличием не только особого психологического климата, в ней явно реализуется комплекс педагогических, эстетических, технических и других компонентов.
В отличие от традиционной методики мы получили положительный результат при активизации самообразования студентов как за счет современного научного подхода к эксперименту и обработке его результатов, так и за счет тренинга внутренней мотивации путем изменения причинных схем. Расширенная возможность тренировки и самоконтроля в данной предметной области является особенностью данной работы.
Личностно-ориентированный подход в лабораторном практикуме осуществлен на основе многовариантности заданий, системе контекстно зависимой помощи, дружественном интерфейсе. Дифференцированный подход в обучении осуществляется на индивидуальном уровне, когда сам обучающийся, исходя из своих особенностей и возможностей, определяет личную "траекторию" своего продвижения по теме.
Выработке устойчивого интереса к учебно-исследовательской работе способствует богатый информационно-дидактический инструментарий компьютерных технологий для представления учебного материала. Управление познавательной деятельностью студентов и контроль процесса обучения производится по результатам оперативной диагностики и тестирования.
Программы носят разветвленный характер и алгоритм их прохождения, темп обучения или тренировки зависит от самого обучаемого. В них предусмотрена регистрация как конечных, так и промежуточных результатов, поэтому обучаемый может выполнять работу раздельно во времени. Такой подход применяется на фронтальных лабораторных занятиях для студентов всех специальностей с начала обучения в вузе.
С целью повышения качества фундаментальной естественно-научной подготовки и развития творческих способностей обучаемых нами разработана методика формирования навыков научно-исследовательской деятельности и развития творческой активности студентов в лабораторном физическом практикуме с элементами автоматизации физического эксперимента. Особенностью ее является усиление компонентов репродуктивного и продуктивного типов мышления компонентами творческого мышления (экспериментально-исследовательской деятельностью).
В процессе практической реализации этой методики были решены и эргономические проблемы для обеспечения органичности и удобства взаимодействия человека и машины. Эти проблемы рассмотрены на двух уровнях; прикладном и системном. В первом случае речь идет об эргономических характеристиках человеко-машинного общения, а во втором – об основных идеях и принципах построения и функционирования системы в целом.
Решение проблемы фундаментализации и повышения качества естественно-научной подготовки посредством компьютеризированного лабораторного практикума привело нас к созданию серии программ повышенной сложности, каждая из которых содержит концентрированный теоретический раздел, определяющий базовые понятия и поясняющий суть задачи, лежащие в ее основе закономерности. Затем следует демонстрационный раздел, показывающий в динамике в нужном темпе все фазы процесса. После этого обучаемый получает возможность экспериментировать самостоятельно – компьютерная система превращается в рабочий инструмент, причем не только инструмент математического моделирования, но и в измерительную систему.