Смекни!
smekni.com

Обучение младших школьников составлению арифметических задач (стр. 3 из 8)

Методисты включают в работу по составлению задач следующие виды упражнений:

1. Изменение поставленного к условию задачи вопроса.

2. Изменение условия задачи без изменения поставленного вопроса.

3. Изменение условия и вопроса задачи.

4. Преобразование данных задач в задачи родственных им видов, т.е. в "задачи, в которых величины связаны одинаковой зависимостью. Так, родственными будут задачи на нахождение четвертого пропорционального, на пропорциональное деление и на нахождение неизвестных по двум разностям, так как в них величины связаны пропорциональной зависимостью. Можно одну задачу преобразовать в другую родственного вида путем выполнения арифметических действий над числовыми значениями величин. В результате такого преобразования и сравнения способов решения задач родственных видов приведем детей к обобщению способов решения этих задач".

5. Составление аналогичных задач, т.е. составление задач, имеющих одинаковую математическую структуру, не изменяя связь между данными и искомым. Аналогичные задачи надо составлять после решения данной готовой задачи, предлагая при этом, когда возможно, изменять не только сюжет и числа, но и величины.

6. Составление обратных задач, т.е. составление задач, в которых "при тех же условиях одно из данных первой задачи служит искомым во второй и искомое первой входит в число данных второй". При составлении обратных задач связи между числовыми данными не должны изменяться.

В 3 классе, отмечает М. В. Богданович [3], вводятся новые виды простых и составных задач. В методике работы по решению каждой из них просматриваются, как и ранее, определенные этапы. Сначала идет подготовка к введению задач нового вида, которая сводится к выполнению специальных упражнений, предусмотренных в учебнике или составленные учителем. Далее идет ознакомление с решением задач нового вида: под руководством учителя, с большей или меньшей долей самостоятельности, ученики решают задачу или несколько задач. В дальнейшем ведется работа по совершенствованию умения решать задачи рассмотренного вида. Как правило, на этом этапе ученики решают задачи самостоятельно устно или с записью решения, при этом используют различные формы записи: отдельными действиями с пояснением в утвердительной или вопросительной форме, а также без пояснений, в виде выражения.

К новым видам простых задач относятся задачи на увеличение (уменьшение) данного числа или значения величины на несколько единиц или в несколько раз, сформулированные в косвенной форме; задачи на вычисление времени; задачи, с помощью которых раскрывается связь между величинами: скоростью, временем и расстоянием.

Задачи на увеличение (уменьшение) числа на несколько единиц, сформулированные в косвенной форме, легко преобразовать в задачи, сформулированные в прямой форме, используя знание отношения: если первое число больше (меньше) второго на несколько единиц, то второе число меньше (больше) первого на столько же единиц. При ознакомлении с решением задач, сформулированных в косвенной форме, можно сначала решить задачу, сформулированную в прямой форме, а от нее перейти к задаче того же вида, сформулированной в косвенной форме.

Аналогично вводятся задачи на увеличение и уменьшение числа в несколько раз, сформулированные в косвенной форме. При этом надо предусмотреть их сравнение с соответствующими задачами на увеличение и уменьшения числа на несколько единиц.

Задачи на вычисление времени трех видов (нахождение продолжительности события, его начала и конца) рассматривались и ранее, но их решение выполнялось подсчетом минут, часов, дней (суток) по циферблату часов или календарю. Здесь же при решении таких задач выполняются арифметические действия – сложение или вычитание. Циферблат или календарь также можно использовать как для решения, так и для проверки решения.

В 3 классе, отмечает М. В. Богданович [3], вводятся также составные задачи новой математической структуры: задачи на пропорциональное деление разных видов, задачи на нахождение неизвестных по двум разностям разных видов, задачи на встречное движение и движение в противоположных направлениях, задачи на совместную работу.

Задачи на пропорциональное деление вводятся по-разному: можно предложить для решения готовую задачу, а можно сначала составить ее, преобразовав задачу на нахождение четвертого пропорционального. В том и другом случае успех решения задач на пропорциональное деление будет определяться твердым умением решать задачи на нахождение четвертого пропорционального, поэтому в качестве подготовки надо предусмотреть решение задач соответствующего вида на нахождение четвертого пропорционального. Именно поэтому предпочтительней второй из названных вариантов введения задач на пропорциональное деление.

При ознакомлении с решением задачи на непропорциональное деление, отмечает Н. Б. Истомина [4], можно сначала решить готовые задачи, а позднее выполнить преобразование задачи на нахождение четвертого пропорционального в задачу на пропорциональное деление и после их решения сравнить как сами задачи, так и их решения.

Полезны, по словам С.Кожухова [5]упражнения на составление задач учащимися с последующим решением их, а также упражнения по преобразованию задач. Это, прежде всего, составление задач, аналогичных решенной. Так, после решения задачи с величинами: ценой, количеством и стоимостью – предложить составить и решить похожую задачу с теми же величинами или с другими, например скоростью, временем и расстоянием. Это составление задач по их решению, записанному как в виде отдельных действий, так и в виде выражения, это составление и решение задач по их краткой схематической записи.

Ученики называют величины, подбирают и называют соответствующие числовые данные, формулируют вопрос и решают составленную задачу. Такую схематическую запись можно выполнить на листе бумаги, причем название величин можно записать на карточках и вставить их в верхнюю графу (цена, количество, стоимость; масса одного предмета, число предметов, общая масса и др.). Можно предлагать для составления задач краткую запись с числовыми данными или рисунок. Позднее, после рассмотрения задач на пропорциональное деление второго вида и задач на нахождение неизвестных по двум разностям можно выполнить упражнения на преобразование задачи одного вида в другой, а после их решения выполнить сравнение самих задач и решений этих задач.

7. Сделаем вывод, что составление задач – один из методов обучения младших школьников решению задач. Наряду с решением готовых задач часто требуют от учеников самостоятельно подобрать пример для иллюстрации теоретических положений, самостоятельно составить задачу на тот или иной вид зависимостей между величинами. Поэтому учителю, для того, чтобы добиться положительных результатов в работе с учениками над арифметической задачей, необходимо правильно руководить данным процессом и требовать от школьников самостоятельности в составлении задач. Методами формирования умения составлять задачи являются: изменение поставленного к условию задачи вопроса, изменение условия задачи без изменения поставленного вопроса, изменение условия и вопроса задачи, преобразование данных задач, составление обратных задач, составление аналогичных задач.

1.3 Критериальная характеристика определения уровня сформированности умений составлять арифметические задачи

Критерии и показатели оценивания сформированности умений у третьеклассников составлять арифметические задачи были определены, исходя из содержания программы обучения математики в начальных классах.

В современной педагогике в качестве показателей обученности определяют уровни усвоения знаний и умений, состояние видов активной деятельности ученика, обеспечивающих усвоение знаний.

Оценивание деятельности ребенка ведется учителем с первых дней обучения. Главным требованием его организации в эти дни является опора на успех. Учитель начинает с оценивания готовности детей к уроку, соблюдения ими правил школьной жизни, проявления навыков культурного общения и поведения. Учитель обязательно подчеркивает, что надо хорошо готовиться к уроку, поясняя при этом, что значит "хорошо готов к уроку". Уже на второй неделе обучения сфера оценочной деятельности учителя расширяется. Кроме успехов в учебном труде маленьких учеников, оцениванию уже подлежат правильность, аккуратность, старательность при выполнении работы, соответствие результатов труда образцу. Необходимо каждый раз вводить четкие критерии оценивания: что значит аккуратно, правильно и т. д.

И только на третьем этапе оценочной деятельности, после усвоения детьми критериев правильности и соответствия требованиям, учитель может вводить фиксацию трудностей ребенка.

Таким образом, приоритетными остаются опора на успехи ребенка и акцент на положительных сторонах в его учебной деятельности.

Фиксация трудностей предполагает, прежде всего, показ перспектив: что именно и как ребенку нужно сделать. Фиксируя трудности, учитель вселяет в ребенка уверенность в том, что у него все обязательно получится, и максимально помогает ему в этом. Успешность оценивания определяется его систематичностью. Важно, чтобы оценен был каждый вид деятельности на каждом ее этапе. Традиционно учитель оценивает итоги деятельности ребенка (ответил на вопрос, решил задачу, выделил орфограмму и т. п.). Системность же оценивания предполагает оценку не только результата, но и принятия инструкции (правильно ли понял, что делать), планирования (правильно ли выделил последовательность действий), хода выполнения.

Критерии оценивания составления арифметических задач определяются следующими умениями:

1. Умение находить правильное решение задачи;

2. Умение преобразовывать задачи

3. Умение оценивать новое условие

4. Умение составлять обратную задачу

5. Умение составлять свою задачу