В учебнике [3] есть несколько упражнений на решение иррациональных уравнений. Для решения таких уравнений используется метод возведения в квадрат и координатный метод. В главе «Элементы тригонометрии» приведены упражнения на решение тригонометрических уравнений.
Заметим, что в упражнения для повторения включен отдельный пункт, в который входят упражнения на решение различных видов уравнений и их систем, задачи на составление уравнений. Примечательно то, что более трудные задачи по теме «Уравнения» нашли свое отражение в разделе «Задачи для внеклассной работы».
В учебниках [33], [34] понятие уравнения, в отличие от учебников [1], [2], [3], вводится уже в 5-м классе в главе «Натуральные числа», хотя и также через сюжетную задачу. Определение уравнения, его корня и решения аналогично определению, данному в учебнике [1]. Однако нахождение неизвестного базируется не на основе использования основных свойств, а с помощью правил нахождения неизвестного слагаемого, уменьшаемого, вычитаемого, множителя, делимого и делителя, с использованием переместительного, сочетательного и распределительного законов. В 5-м классе учащиеся приобретают навыки решения уравнений в основном при решении текстовых задач (непосредственно само решение задач, составление задач по уравнению, определение значения выражения), таким образом, учащиеся еще и логически мыслят, рассуждают, анализируют.
Учебник [34], по сути, является продолжением учебника [33], так как с темой уравнения учащиеся соприкасаются только при непосредственном решении самих уравнений и текстовых задач. Единственное отличие заключается в следующем: учащиеся при решении уравнений используют операцию раскрытия скобок и приведения подобных слагаемых, базирующуюся на законах, известных из курса 5-ого класса. И только по окончании курса 6-ого класса на основании уже изученного ранее вводятся два свойства решения уравнений, которые в учебниках [1], [2], [3] имеют место в 7-м классе.
В учебниках[35], [36], [37], [38] понятие уравнения вводится впервые в 6-м классе также через сюжетную задачу. Правила решений аналогичны правилам, данным в учебниках [33], [34]. Однако заметим, что определение понятия решить уравнение и определение понятия корень не даны, как, впрочем, не сказано о том, сколько вообще корней может иметь уравнение. Данные понятия вводятся лишь в учебнике [36].
Дальнейшее изучение темы «Уравнения» продолжается в курсе алгебры 7-ого класса. Примечательно, что также как и в учебниках [33], [34], учащиеся приобретают навыки решения уравнений в основном при составлении и решении текстовых задач. Однако стоит отметить то, что материал по данной теме не является цикличным – весь необходимый материал изучается отдельными блоками, а блоки структурированы по сложности (от простых уравнений к более сложным).
Система задач в учебниках [35], [36], [37], [38] значительно шире, помимо задач на оперирование основными понятиями и задач на овладение алгоритмом решения уравнений при решении текстовых задач (причем не только алгебраическим методом, но и арифметическим), она включает еще и упражнения в чтении и записи алгебраических упражнений, упражнения на истолкование алгебраических выражений для разных условий задачи, упражнения на составление алгебраических выражений и задач по готовым выражениям, кроме того, присутствуют задания тестового характера. Задания повышенной трудности вынесены в пункты под названием «Для тех, кому интересно». Способы решения уравнений аналогичны способам, данным в учебниках других авторов.
Примечательно то, что при решении уравнений учащиеся могут пользоваться не только основными свойствами, но и методами, которые используются в учебниках [11], [12].
В 8-м классе учащиеся решают квадратные уравнения (в том числе неполные и приведенные уравнения), пользуясь приемом выделения квадрата двучлена, методом замены переменной, методом разложения на множители, теоремой Виета. Система задач по теме «Квадратные уравнения» включает разнообразные задачи: задачи на оперирование основными понятиями, задачи на составление уравнений, задачи на заполнение пропусков в уравнении и другие.
Примечательно, что в учебнике [37]находит отражение формула нахождения корней квадратного уравнения с четным вторым коэффициентом (1) и формула нахождения корней приведенного квадратного уравнения (2):
(1) (2)Далее учащиеся закрепляют навыки решения уравнений при решении различных систем уравнений и задач.
В курсе 9-ого класса учащиеся решают уравнения с модулем, целые, рациональные, иррациональные, дробные уравнения, уравнения с параметром, задачи на составление уравнений, системы уравнений с двумя переменными. Отметим, что в учебнике [38] для нахождения корня уравнения используется графическое исследование уравнений.
Таким образом, в учебном пособии [38] охвачен более широкий класс уравнений, чем в учебниках других авторов, а в главу «Повторение» включены все виды уравнений, изученных ранее, а также системы уравнений второй степени.
В учебниках [4], [5], [6] передвведением уравнений с одной переменной изучаютсясначалавыражения и их преобразования. Понятие уравнения с одной переменной вводится через сюжетную задачу в 7-м классе. Далее дано определение корня уравнения: «Корнем уравнения называется значениепеременной, при котором уравнение обращается в верное равенство» [[4],23с.]; на примерах показано, что количество корней может быть разным. Так же вводится понятие «решить уравнение – значит найти все его корни или доказать, что корней нет» [[4],24с.] и равносильные уравнения. Далее рассматриваются линейные уравнения с одной переменной.
Отметим, что система задач включает однотипные упражнения на решение уравнений, почти все они обязательного уровня. Однако, пункт «Дополнительные упражнения» содержит разнообразные задачи повышенного уровня, а, в общем, весь курс алгебры 7-ого класса пронизан уравнениями различной степени сложности.
Отметим также, что в учебнике [4]курс алгебры 7-ого класса начинается и заканчивается темой уравнения. В конце учебного года в главе «Системы линейных уравнений» вводится определение линейного уравнения с двумя переменными и его решения. Система задач в данной главе включает упражнения различной степени сложности на решение уравнений и их систем различными способами.
В пункт «Задачи повышенной трудности» включены параметрические уравнения, уравнения с модулем, целочисленные уравнения, а также задачи на составление систем уравнений и их решение.
В учебнике [5]в главе «Квадратные корни» изучаются уравнения вида
, позднее вводится определение квадратного уравнения, формула корней квадратного уравнения, теорема Виета. Система задач включает упражнения на решение квадратных, рациональных, дробно-рациональных и других видов уравнений различными методами, а также упражнения на решение задач с помощью системы уравнений. Отметим, что в учебнике [5]имеется глава «Дополнительные упражнения», в которую включен очень широкий класс задач различной степени сложности на решение уравнений.В учебнике [6]уравнения изучаются в отдельной главе, в которую включены целые уравнения, биквадратные, иррациональные уравнения, системы уравнений с двумя переменными и системы уравнений второй степени, а также задачи на составление систем уравнений. Система задач, также как и в учебнике [5], включает упражнения различной степени сложности, в том числе, и задачи повышенной трудности.
В учебниках [13], [14], [15]заложено проблемное изложение материала, развивающее обучение и диалектический подход к введению математических понятий.
Понятие уравнение рассматривается в 7-м классе в качестве математической модели. Само решение уравнений, то есть нахождение корней, происходит посредствам применения формул сокращенного умножения, способа группировки, разложения на множители и прочее.
В учебнике [13] рассматривается линейное уравнение, причем, кроме определения понятия уравнения с одной переменной (аналогично определению, данному в учебниках [1], [2]), вводится определение понятия уравнения с двумя переменными и его решения, а также теорема о графике линейного уравнения. Итогом изучения уравнений в 7-м классе является рассмотрение темы «Графическое решение уравнений» и темы «Системы двух линейных уравнений с двумя переменными».
В учебнике [14]задачи на данную тему становятся сложнее: это решение рациональных и иррациональных уравнений, квадратных (полных, неполных, приведенных, неприведенных) и биквадратных уравнений, уравнений с параметрами и прочие, хотя методы решения уравнений аналогичны методам, данным в учебниках [36], [37], [38].
Отметим также, что данные, которые нужно запомнить, например, алгоритмы решения конкретного класса уравнений, выделены курсивом.
Система задач включает в себя разнообразные задачи – от примитивных задач до заданий повышенной трудности. Такое разнообразие заданий обеспечило наличие задачника к данному учебнику.
В курсе 9-ого класса учащиеся знакомятся с понятием рационального уравнения с двумя переменными и понятием решения такого уравнения, получают представление о равносильных преобразованиях. Исходя из этого, система задач содержит различные виды упражнений на решение рациональных уравнений с двумя неизвестными и их систем, а также упражнения на применение данных уравнений при решении текстовых задач.