Смекни!
smekni.com

Операция над множествами как основа обучения арифметическим действиям над целыми неотрицательными (стр. 1 из 8)

Операция над множествами как основа обучения арифметическим действиям над целыми неотрицательными числами

Оглавление

Введение

Глава 1. Использование элементов множества в обучении математике в начальных классах

1.1 Число как результат количественного сравнения совокупностей предметов

1.2 Теоретико-множественный смысл понятия числа и арифметических действий над ними

1.3 Методика раскрытия конкретного арифметических действий в начальных классах

Глава 2. Опытно–экспериментальная работа по изучению арифметических действий на теоретико-множественной основе

2.1 Из опыта работы учителей по использованию множеств в обучении математике в начальных классах

2.2 Исследование и анализ работы учителей по применению элементов множеств при изучении арифметических действий младшими школьниками

2.3 Результаты опытно-экспериментальной работы по использованию элементов множеств при раскрытии конкретного смысла арифметических действий

Заключение

Использованная литература

Приложение


Введение

Велико значение математики в повседневной жизни человека. Без счета, без умения правильно складывать, вычитать, умножить и делить числа немыслимо развитие человеческого общества. Четыре арифметических действия, правила устных и письменных вычислений изучаются, начиная с начальных классов, а устный счет сейчас предлагается чуть ли не с пеленок.

В настоящее время в связи с дифференциацией процесса обучения, введением профильных образовательных систем актуальной становится проблема разработки соответствующих программ обучения. Существующие альтернативные программы и учебники по математике для начальной школы не полностью удовлетворяют потребностям не только специализированной начальной школы, но и обычной системы начального образования. Содержание этих программ во многом устарело, оно не учитывает тех, безусловно, интересных эффективных наработок в области педагогики, психологии и частных методик, которые уже вошли в практику многих учителей. В связи с этим представляется необходимой разработка усовершенствованных вариантов альтернативных программ по математике с учетом этих наработок. Сознательное обучение учащихся по любому предмету и в частности по математике, возможно тогда, когда обучение опирается на соответствующие жизненные наблюдения детей. Накопление собственного опыта происходит при непосредственном наблюдении и восприятии мира. Множество – неопределяемое, но в то же время важное понятие в математике. При изучении математики учителя начальных классов часто обращаются и используют элементы множеств. Фактически наглядное обучение должно способствовать движению мысли от жизненных наблюдений к существенности изучаемого понятия.

Если учесть, что дети мыслят формами, красками предмета и ощущениями, то использование элементов множеств просто необходимо для обучения детей в начальных классах. Еще Я.А. Коменский, И.Г. Песталоцци, К.Д. Ушинский подчеркивали чрезвычайно важную роль наглядности (именно использования элементов множества при обучении арифметическим действиям). Использование элементов множества, как счетный материал помогает достижению важнейшей цели обучения – научить детей считать.

Математика - это наука о количественных отношениях и пространственных формах действительного мира. Считается, что чем богаче представление детей о количественных и пространственных отношениях реальных предметов, тем легче им будет в дальнейшем перейти от этих представлений к математическим понятиям. Применение элементов множества способствует развитию логического мышления и речи детей: помогает перейти к обобщениям, которые затем применяются на практике, формируют убежденность в истинности знаний. Также его продуктивное использование в обучении всегда способствует и стимулирует активную мыслительную деятельность, развивает познавательную активность, наблюдательность; снижает утомляемость, способствует поддержке непроизвольного внимания детей. Элементы множества является исходным материалом для формирования математических понятий. Все существующие ныне альтернативные системы обучения опираются на теоретико-множественный подход при формировании понятия числа и арифметических действий на предметный счет. Предметный счет повышает интерес к знаниям, делают более легким процесс их усвоения, поддерживают внимание ребенка.

Использование элементов множества должно быть подчинено задаче постепенного перехода от конкретного к абстрактному. Предметное преподавание неизбежно приводило к индуктивным обобщениям, при которых дети обычно активны. Этот способ обучения соответствует обучению в начальных классах. Формирование умения считать, навыков решения арифметических действий у младших школьников является одной из сложнейших задач учителя. Учителю нужно совершенно отчетливо представлять себе уровень, на котором должен быть усвоен каждый из вопросов умения считать. Связи с этим представляется целесообразным конкретизировать требования, которые могут быть предъявлены к учащимся к концу изучения основных тем программы («Десяток», «Сотня», «Тысяча», «Многозначные числа»). Показать, что же именно должны знать и уметь дети, какими навыками они должны овладеть в ходе работы над темами. Исходя из всего сказанного можно сказать, что при обучении арифметическим действиям в начальных классах обязательным условием является необходимое использование элементов множества, т.е. предметного счета. Без предметного преподавания детей обучать невозможно и нельзя.

Существующие различные подходы усложняют изучение иррациональное использование элементов множества при обучении математике, в частности при формировании понятия числа и раскрытия конкретных смыслов арифметических действий. Поэтому возникает необходимость изучения систематизации данной проблемы. Отсюда вытекает актуальность нашей темы. Исходя из этого возникает проблема исследования: как используется и на каком уровне находится использование элементов множества при изучении арифметических действий.

Тема нашей дипломной работы: «Операция над множествами как основа обучения арифметическим действиям над целыми неотрицательными числами».

Целью исследования данной дипломной работы является поиск путей выявления эффективного применения элементов множества при раскрытии конкретного смысла арифметических действий над целыми неотрицательными числами.

Исходя из цели мы поставили следующие задачи исследования:

1. Раскрыть роль использования элементов множества в обучении арифметическим действиям (т. е. роль использования предметного счета).

2. Какие требования предъявляются по обучению и по использованию наглядных пособий как элементов множества при обучении арифметическим действиям над целыми неотрицательными числами.

3. Анализировать экспериментальное исследование по проблеме выявления эффективности применения элементов множества при обучении арифметическим действиям над целыми неотрицательными числами.

Гипотеза исследования. Мы предполагаем, что использование элементов множества при изучении арифметических действий над целыми неотрицательными числами является как необходимое средство обучения, которое повышает качество знаний у детей, помогает быстрому усвоению темы.

Объект исследования: применение элементов множества в процессе обучения арифметическим действиям над целыми неотрицательными числами в начальных классах.

Предмет исследования: выявление эффективности использования элементов множеств в обучении арифметическим действиям над целыми неотрицательными числами в начальных классах..

Методы исследования: наблюдение, проведение экспериментальных уроков, интервьюирование, анкетирование.

Этапы исследования:

I этап (май – август 2006 г.). Работа над темой, подготовка материалов, изучение литературы по применению операций над множествами при обучении арифметическим действиям.

II этап (сентябрь – октябрь 2006 г.). Наблюдение, проведение экспериментальных уроков, интервьюирование.

III этап (ноябрь – декабрь 2006 г., январь – май 2007 г.). Работа над написанием диплома.

Теоретическая значимость: Определение значения использования элементов множества, полученных в процессе исследования результатов, в науке имеет большое значение. Новые знания дает совершенствовать использование элементов множества в обучении арифметическим действиям.

Практическая значимость: изученный мною вопрос по применению элементов множества при обучении поможет мне в дальнейшей учительской работе, как правильно и разумно применять элементов множества на уроках математики.

Данная дипломная работа состоит из введения, двух глав, заключения, списка использованной литературы, приложения.


Глава 1. Использование элементов множества в обучении математике в начальных классах

1.1. Число как результат количественного сравнения совокупностей предметов

Математика, как и все другие науки, возникла из потребностей деятельности людей. На очень ранней ступени развития человека возникла необходимость подсчитывать количество добычи или урожая, измерять земельные участки, определять вместимость сосудов, вести счет времени. Для удовлетворения этих практических потребностей возникли примитивные способы счета и измерения, т. е. начало арифметики и геометрии.

При дальнейшем развитии общества усложнялись практическая деятельность человека, вместе с ней росли потребности в усовершенствованных приемах счета и измерений. Первоначальный счет по пальцам и измерения при помощи размеров частей тела человека (пядь, локоть) не могли уже удовлетворять потребностям жизни. Возникла необходимость в более быстрых и более точных приемах счета и измерений. Продолжительный опыт привел человека к установлению некоторых общих правил, дающих возможность при счете конкретных предметов не прибегать в каждом отдельном случае к перечислению и перекладыванию этих предметов. Постепенно человек приобрел способность отвлечения, абстрагирования от конкретного счета. Многолетняя практика каждого народа еще в древности выработала оснавные понятия измерения – арифметики и геометрии. В дальнейшей тысячелетии практический опыт применения этих понятий, дополняя первоначальный запас сведений о способах счета и измерения, привел к новым абстракциям, к усовершенствованию приемов арифметики и геометрии. Возникают новые, более совершенные возможности познания количественных отношений предметов и явлений окружающего мира и вместе с тем возможность использования этого познания в трудовой деятельности. Человек от живого созерцания окружающего мира переходит к абстрактному мышлению о явлениях этого мира. Благодаря этим абстракциям человек вникает более глубоко закономерностям мира, получает возможность более плодотворного использования своих знаний для практической деятельности .