Смекни!
smekni.com

Современный урок математики требования к нему (стр. 13 из 16)

Оглашается последовательность игровых действий игры: 1) получить карточку; 2) прослушать правила игры; 3) при нахождении требуемого в игре всем участникам группы поднять руки.

Учитель демонстрирует карточку и оглашает правила игры:

Вашей группе необходимо провести воображаемого «коня» от линии старта к линии финиша. Ход можно начинать с любого места на старте. «Конь» двигается так, как на шахматной доске. Но нужно соблюдать одно условие: число, которое является решением показательного уравнения в клетке старта или там, где стоит «конь», сложенное с числом, которое является решением показательного уравнения в клетке, где «конь» делает поворот, должно дать число, которое является решением уравнения куда прыгает «конь». Некоторые клетки могут оказаться «фальстартом». Всего в данной игре существует два возможных пути. Если ваша группа за 8 минут первая найдет оба пути, то группа получит 5 баллов. Если Вы найдете оба пути за 8 минут, но не первые, группа получит 4 балла. Если Вы найдете один путь за 8 минут, группа получит 3 балла. Если Вы не найдете ни одного пути за 8 минут, то ваша группа получит два балла. Совет: для более быстрого поиска путей разбейте стартовые клетки между участниками группы.

Если вы найдете путь, запишите его следующим образом: А1→В3 →…

Все группы получают одинаковые карточки (карточки выдаются каждому учащемуся в группе).

На игру дается 8 минут (см. на стр. 68 карточку для игры «Конь»).

После проведения игры и выставления баллов за работу группам, группа первая нашедшая пути выписывает их на доске.

3этап. Следующая оцениваемая работа групп – это «Решение показательных уравнений». Группам выдаются карточки с заданием. Все условия и требования работы описаны на карточках (см. на стр. 62 карточку с групповыми заданиями).

4этап. На этом этапе группы отчитываются по групповому заданию «Решение показательных уравнений». Выставляются оценки группам по данному заданию и итоговые оценки.

5этап. Учитель подводит итоги по работе групп и итоги урока.

6этап. Запишите домашнее задание: §12, №220 (3), №223 (1), 225(1).

7этап. Можно предложить учащимся ответить в рабочей тетради на следующие вопросы: Как ты считаешь, хорошо ли работала ваша группа? Было ли давление со стороны в группе? Доволен ли ты своей работой на уроке?



Карточка для дидактической игры «Конь».

F
финиш
E
D
C
B
A
старт
1 2 3 4

Возможные пути проведения «коня»: А1→ С2→ Е1→ F3,

А3 → С4 → Е3 → F1.


Карточка по групповому заданию «Решение показательных уравнений»

1) Распределите уравнения между собой в группе.

2) Решите выбранное уравнение в тетради, постарайтесь полностью обосновать решение.

3) Расскажите остальным представителям группы решение вашего показательного уравнения. Если вы не до конца знаете, решение вашего уравнения, решите уравнение коллективно. Обсудите правильность решения каждого уравнения.

4) Подготовьтесь к отчету группы: из группы вызывается человек для описания способа решения уравнения, которое он решал.

5) Слушая отчет групп, запишите в тетрадь решение остальных показательных уравнений, исправляйте ошибки при отчете групп.

Вся группа за данное задание получит ту оценку, которую получит представитель группы, выполняющий отчет.

На всю работу вам дается 15 минут.

Показательные уравнения:

(1)

(2)

(3)

(4)


Приложение № 5.

Урок по теме «Показательные неравенства».

Технология модульного обучения

Предмет «Алгебра и начала анализа».

Цели:

образовательные:

1. формирование понятия показательного неравенства;

2. формирование умения решения показательных неравенств.

развивающие:

1. развитие мышления учащихся;

2. развитие познавательного интереса, любознательности;

3. развитие умений учебно-познавательной деятельности;

4. развитие волевой сферы личности.

воспитательные:

1. воспитание настойчивости, организованности, ответственности;

2. осуществление трудового воспитания учащихся.

Тип урока: урок изучения нового материала.

Продолжительность занятия – два урока.

Оборудование: модуль «Показательные неравенства», самостоятельная работа к модулю.

Методы: продуктивный, частично-поисковый.

Формы познавательной деятельности учащихся: индивидуальная, групповая.

Структура урока:

1этап. Организационный этап.

2этап. Изучение новых знаний и способов деятельности.

3этап. Информация о домашнем задании.

4этап. Подведения итогов урока.

Ход урока:

1этап. Учащимся сообщается, что сегодня они будут самостоятельно изучать тему «Показательные неравенства» по предложенным им программам. При возникновение вопросов учащиеся могут обращаться за помощью к учителю. На изучение данной темы отводится урок и пятнадцать минут следующего урока. В конце второго урока необходимо будет написать самостоятельную работу по изучаемой теме, рассчитанную на двадцать минут.

2этап. Учащимся выдается модуль «Показательные неравенства» (см. ниже), по которому они начинают работать. На втором уроке (за двадцать пять минут до звонка) учащимся выдается самостоятельная работа.

3этап. Домашнее задание: §13, задача 5(разобрать), №299 (2,3), № 231(4), решить неравенство

.

4этап. Итоги подводятся серией вопросов: Какие вы сегодня неравенства учились решать? Какие есть способы обоснования решений показательных неравенств? Трудно ли было изучать тему самостоятельно?

Модуль по теме «Показательные неравенства»

«Тот, кто учится самостоятельно, преуспевает в семь раз больше, чем тот, которому все объяснили».

(Артур Гитерман, немецкий поэт)

Тема: Показательные неравенства.

Цели:

1. Узнать, что такое показательные неравенства.

2. Изучить основные методы решения показательных неравенств.

3. Научиться решать показательные неравенства.

Учебный элемент № 1.

1. Запишите тему в тетрадь.

2. Вспомните, что такое показательные уравнения. Напишите в тетрадь по аналогии, что такое показательные неравенства.

3. Прочитайте теорию (см. ниже). Занесите в тетрадь ту информацию, которую считаете нужной.

Теория.

Рассмотрим решение показательных неравенств вида

, где b – некоторое рациональное число.

Если

, то показательная функция
монотонно возрастает и определена при всех х. Для возрастающей функции большему значению функции соответствует большее значение аргумента. Тогда неравенство
равносильно неравенству
. Если
, то показательная функция
монотонно убывает и определена при всех х. Для убывающей функции большему значению функции соответствует меньшее значение аргумента. Тогда неравенство
равносильно неравенству
.