Смекни!
smekni.com

Современный урок математики требования к нему (стр. 10 из 16)

Проблемная ситуация – это состояние умственного затруднения, вызванного в определенной учебной ситуации объективной недостаточностью ранее усвоенных учащимися знаний и способов умственной или практической деятельности для решения возникшей познавательной задачи.

В процессе обучения математике существуют разные возможности создания проблемных ситуаций ([60],[75]).

Можно выделить практические этапы деятельности учащихся при использовании технологии проблемного обучения. На первом этапе происходит осознание проблемы, учащиеся вскрывают противоречие, заложенное в вопросе. Это противоречие может быть разрешено с помощью гипотезы. Формулирование гипотезы составляет второй этап. Третий этап решения проблемы доказательство гипотезы. Заканчивается решение проблемы общим выводом, в котором изучаемые причинно-следственные связи углубляются и раскрываются новые стороны познаваемого объекта или явления – четвертый этап решения проблемы [38].

Урок по теме «Показательные уравнения» (см. Приложение № 3).

Приведем замечание по проведенному уроку. В практической реализации урока при общих выводах по решенной проблеме желательно было бы провести с учащимися некоторую (хотя еще не совсем полную) классификацию показательных уравнений и способов их решения. Один из вариантов классификации показательных уравнений можно найти в [5] (там же много и практических заданий). Приведем классификацию показательных уравнений применительно к проведенному уроку.

Классификация показательных уравнений.

I тип. Простейшие показательные уравнения.

II тип. Показательные уравнения, приводящиеся к виду:

где

- некоторые функции зависящие от
(одна из них может быть константой).

III тип. Показательные уравнения вида:

Уравнение (*) приводится к уравнению типа II или может не иметь решений, если

.

IV тип. Показательные уравнения вида:

(отличительная особенность: наличие одного и того же коэффициента перед

), где
и
- постоянные величины. Для решения этого уравнения вынесем за скобки общий множитель
, где
, наименьшее из чисел
. После этого уравнение примет вид

Выражение стоящее в скобках уравнения (1) является постоянной величиной. Обозначим эту величину буквой

, тогда уравнение (1) примет вид

, откуда имеем при

Уравнение (2) является уравнением типа III.

V тип. Показательные уравнения вида:

С помощью подстановки

приводятся к квадратному уравнению
. Решив последнее, найдем его корни
и
. После этого уравнение (*) сводится к решению следующих двух показательных уравнений
и
. Эти уравнения приводятся к I типу.

В психологии считается, что разбиение рассматриваемых объектов на виды, типы (т.е. их классификация) сохраняется в памяти намного дольше и воспринимается более осознано, чем рассмотрение отдельных объектов. Поэтому классификация показательных уравнений поможет учащимся запомнить виды уравнений и способы их решения. В дальнейшем эта классификация может быть дополнена новыми видами уравнений.

2 УРОК

Проводился с использованием технологии группового обучения, в начале урока была проведена дидактическая игра.

Технология группового обучения - это такая технология обучения, при которой ведущей формой учебно-познавательной деятельности учащихся является групповая. При групповой форме деятельности класс делится на группы для решения конкретных учебных задач, каждая группа получает определенное задание (либо одинаковое, либо дифференцированное) и выполняет его сообща под непосредственным руководством лидера группы или учителя. Цель технологии группового обучения – создать условия для развития познавательной самостоятельности учащихся, их коммуникативных умений и интеллектуальных способностей посредством взаимодействия в процессе выполнения группового задания для самостоятельной работы.

Немного о дидактической игре. Дидактическая игра – это игра, используемая в целях обучения, воспитания и развития. В отличие от игр вообще дидактическая игра обладает существенным признаком – наличием четко поставленной цели обучения и соответствующего ей педагогического результата.

Урок по теме «Показательные уравнения» (см. Приложение № 4).

Несколько замечаний по проведенному уроку. При проведении дидактической игры правила игры оглашались преподавателем. Учащиеся плохо восприняли правила игры на слух. Оптимальнее написать правила игры на карточке для игры «Конь», и дать учащимся самим разобраться с ними. Также можно было продолжить классификацию показательных уравнений, т. к. группам были предложены для решения ранее не рассматриваемые типы показательных уравнений.

3 – 4 УРОКИ

Проводились по технологии модульного обучения.

Сущность модульного обучения состоит в том, что обучающийся более самостоятельно или полностью самостоятельно может работать с предложенной ему программой, включающей в себя: • целевой план действий; банк информации; методическое руководство по достижению поставленных дидактических целей ([41]).

Функции педагога могут варьироваться от информационно-контролирующей до консультативно-координирующей.

Основное средство модульного обучения - модульная программа. Она состоит из отдельных модулей.

В модульной программе необходимо учитывать ([41]): целевое назначение информационного материала; сочетание комплексных интегрирующих и частных дидактических целей; полноту учебного материала в модулях; относительную самостоятельность элементов модуля; реализацию обратной связи; оптимальную передачу информационного и методического материала.

Урок по теме «Показательные неравенства» (см. Приложение № 5).

Приведем некоторые замечания по проведенному уроку. В приведенном в Приложении № 6 модуле самостоятельная работа находится в самом модуле, в результате многие учащиеся торопились изучить теорию и приступить к самостоятельной работе. Лучше было бы оформить самостоятельную работу на отдельном листе, который выдавался бы учащимся всем одновременно на втором уроке за двадцать минут до звонка.

При работе с модулем многие учащиеся испытали затруднение при решении показательного уравнения

. Поэтому желательно было бы включить в модуль некоторые методические рекомендации для учащихся по решению уравнения
.

2.3. Итоговый контроль. Анализ результатов эксперимента.

В процессе проведения уроков осуществлялся текущий контроль, с помощью отслеживания итогов самостоятельных работ. Текущий контроль показал, что успеваемость учащихся в течение проведения эксперимента не падала.

Далее был организован итоговый контроль.

Итоговый контроль. Самостоятельная работа на тему «Показательные уравнения и неравенства» (см. Приложение № 6).

Результаты итогового контроля (см. Приложение № 7).

Наглядное сравнение результатов предварительного и итогового контроля мы видим на диаграмме «Сравнение результатов предварительного и итогового контроля».

На диаграмме показаны в сравнении результаты предварительного и итогового контроля. Столбцы диаграммы показывают процент учеников выполнивших верно соответствующее задание (причем при подсчете процента учитывались лишь задания, выполненные верно полностью, т.е. в таблицах об итогах соответствующего контроля напротив такого задания стоит знак «+»).