Смекни!
smekni.com

Развитие математических способностей учащихся в основной школе (стр. 6 из 12)

B заключение подчеркнем, что развитие у учащихся математических способностей напрямую зависит от личности учителя. Если школьникам
будет неинтересно с ним, если они не почувствуют роста своих возможностей, то они прекратят углубленные занятия математикой.

2.1.3. Развитие математической одарённости.

Для освещения проблемы одарённости в своей работе за основу я взяла жизненный путь и взгляды замечательного русского математика –Колмогорова Андрея Николаевича. Такой выбор неслучаен, так как в случае А.Н. Колмогорова нам предлагается редкая и, видимо, полезная в научном смысле ситуация: – математический гений размышляет по поводу развития математических способностей у детей и юношества. Следует учесть при этом, что он почти всю жизнь конкретно, как педагог, занимался развитием одаренных детей и юношей, постоянно анализируя свой собственный опыт в этом отношении.

На вопрос о пути своего становления как математика Андрей Николаевич отвечал, что его путь в математику был «извилистым». В детстве Колмогоров не был вундеркиндом. Иначе говоря, не было того резкого умственного опережения, которое заставляет окружающих возлагать на ребенка особые, редко оправдывающиеся надежды на замечательное будущее. Правда, как он сам пишет [9], «интерес к математике проявился достаточно рано. Так, где-то в четыре-пять лет придумал и сам решил такую задачу: имеется пуговица с четырьмя дырочками. Для ее закрепления достаточно протянуть нитку, по крайней мере, через две дырочки. Сколькими способами можно закрепить пуговицу?».

В этом же возрасте, по его словам, «испытал радость математического открытия», открыв закономерность - образование последовательных квадратов:

1=12
1+3=22

1+3+5=32
1+3+5+7=42 и так далее.

Но потом, в средних классах, победили другие интересы: он всерьез увлекается биологией, потом появились шахматы. Когда кончил среднюю школу, то занимался серьезным образом в семинаре С.В. Бахрушина. При этом увлекала металлургия и параллельно с университетом поступил на металлургический факультет химико-технологического института и некоторое время там проучился. «Окончательный выбор математики как профессии,- пишет Колмогоров, - произошел, когда я начал получать первые самостоятельные научные результаты, то есть лет с восемнадцати-девятнадцати».

Свой обычный, ни в коей мере не ускоренный тип развития Колмогоров рассматривал как неслучайный и принципиальный для развития творческих способностей и несколько скептически относился к так называемым «вундеркиндам».

А.Н. Колмогоров уже тогда, тридцать лет назад, видел опасность, которая сейчас стала очевидной для большинства психологов, работающих в области одаренности. Он весьма скептически относился к тому, что по выражению Н.С. Лейтеса, относится только к «возрастной одаренности». Колмогоров в переписке с Крутецким пишет, что «мы теряем много медленно развивающихся потенциально крупных талантов» [29]. И далее еще жестче - « в последние годы эта опасность сильно возросла при развившемся ажиотаже вокруг «одаренности» и особенно математической». Ускоренное прохождение школьной программы, вообще ускоренное развитие, которое много лет является чуть ли не главным критерием высоких способностей, по мнению Колмогорова, мало о чем свидетельствует.

Именно потому для всех, кто работает с одаренными детьми- математиками, он ставит следующие вопросы:

1. «в каком возрасте можно, независимо от тренированности и различий в физиологически обусловленных темпах развития уловить хотя бы в первом приближении математические способности…

2. в каком возрасте форсированное развитие задатков математического мышления уже реально влияет на достижение «потолка» способностей».

Оба этих вопроса в другом месте – в ответах на анкету - формулируются им с почти максимальной степенью четкости:
«сейчас дело идет о выявлении математически одаренных детей с целью организованного форсирования их математических занятий. Следует решить не вопрос о том, когда это возможно, а когда это целесообразно (подчеркнуто А.Н. Колмогоровым)».

Такую постановку вопроса он дополняет личным опытом, весьма уместным, имея в виду масштаб его математического дарования: « что касается лично меня, то я думаю, что ни я сам, ни математическая наука ничего не потеряли из–за того, что задача «выявления» (кавычки Колмогорова) моих математических способностей была предоставлена мне самому. Я начал систематически дополнительно заниматься математикой в возрасте 15-16 лет, когда сам решил, что это серьезное и нужное дело».

Есть и другая точка зрения, которой следуют многие наши педагоги и даже психологи - специалисты по одаренности. Они считают, что чем раньше развивать специальные способности, тем лучше. (Кстати, и В.А. Крутецкий, в переписке с которым Андрей Николаевич обозначил эти мысли, судя по монографии, считал возможным и необходимым ранние специализированные занятия с одаренными к математике детьми.) Если иметь в виду последние физиологические и психофизиологические исследования о сензитивных периодах развития, с одной стороны, и исследования о закономерностях развития общих способностей, с другой, то приходится признать, что позиция, представленная выдающимся математиком, психологически значительно больше обоснована, чем бытующая в ряде школ система раннего интенсивного и специализированного обучения одаренных детей.

Как считает Колмогоров, «до 10-12 лет - с довольно хорошим успехом заменим общим воспитанием сообразительности и умственной активности». « Весьма желательны», - пишет Колмогоров,- и внешкольные занятия - типа математических кружков, но в них « следует по возможности избегать установки на предопределение будущих профессиональных интересов» [9].

Другое дело старшие классы, где «запоздание с усвоением строгой логики и специальных математических навыков в 14-15 лет делается уже трудно восполнимым».

Уже тогда, тридцать лет назад, Колмогоров четко определяет для себя разницу между высокими способностями к изучению математики, с одной стороны, и собственно творческими способностями в этой области, с другой.

По мысли Колмогорова, чтобы стать творческим математиком, нужно, во-первых, сохранять, культивировать у себя своего рода «детское мышление». По мнению А.Н. Колмогорова, способности к математическому творчеству у человека тем выше, чем на более ранней стадии общечеловеческого развития он остановился. Самый гениальный наш математик: (судя по всему, имеется в виду Гаусс),- говорил А.Н. Колмогоров, остановился в возрасте четырех-пяти лет, когда «дети любят отрывать ножки и крылышки насекомым». Себя А.Н. Колмогоров считал «остановившимся на уровне тринадцати лет, когда мальчишки очень любознательны и интересуются всем на свете, но взрослые интересы их еще не отвлекают».

Самодиагноз Андрея Николаевича с психологической точки зрения безупречен. Если учесть невероятную широту «посторонних» научных интересов математика Колмогорова - от гидродинамики до поведения в русской речи падежа, знать его литературные вкусы - от Евтушенко до Томаса Манна и Ахматовой, его культ дружбы и то особое место, которое в его жизни занимал спорт, то в этом случае возникает именно образ типичнейшего подростка. Но у Колмогорова есть еще одно условие для развития математической интуиции, необходимой для творчества. Впрочем, это условие некоторым образом связано с первым. Это обязательные для любого творческого ученого интересы, выходящие за рамки его профессии – прежде всего интересы в искусстве и литературе. (Конечно, в этом отношении Колмогоров не одинок. А. Эйнштейн много раз писал, что «Достоевский дает ему очень много, гораздо больше, чем Гаусс»).

Особое значение для Колмогорова имела музыка. Он считал, что «между математическим творчеством и настоящим интересом к музыке имеются какие-то глубокие связи». Далее он ссылается на своего друга, П.С. Александрова, у которого «каждое направление математической мысли, тема для творческих размышлений связывались с тем или иным конкретным музыкальным произведением». Решая вопрос, стоит ли брать какого-то студента или аспиранта в ученики, Колмогоров всегда принимал во внимание его нематематические, общекультурные интересы.

Следует отметить, что современные психофизиологические исследования подтвердили особую связь музыки и математики. Так, именно у выдающихся математиков и музыкантов были обнаружены так называемые «гармоники», т.е. особые биоэлектрические показатели, определенным образом возникающие в ответ на стимуляцию мозга.

Обобщая выше сказанное, можно сделать следующие выводы:

1. По мнению Колмогорова, ускоренное («вундеркиндное») развитие не только не обязательно для достижения в будущем высокого профессионального (творческого) уровня, но в большей степени чревато возможностью неудач и даже психических отклонений. При диагностике математических способностей у детей категорически нельзя ориентироваться на темп развития и обучения.

2. Великий математик считал, что недопустима ранняя специализация способностей. Лишь с расцвета подросткового возраста (с 12-13 лет) можно начинать расширенное и углубленное обучение математике.

3. Для развития творческих способностей к математике, считает Колмогоров, необходимо выйти за пределы самой математики и развивать у ребенка, подростка или юноши общекультурные интересы, в частности, интерес к искусству (прежде всего - музыке) и поэзии.

В заключение хотелось бы добавить, что в способ­ных детях таланты развиваются только в результате самостоятельной умственной работы, привычки преодолевать разные трудности. Такие условия дает самообуче­ние и разумное одиночное обучение, не обучающее, но ободряющее и завлекаю­щее. Полная самостоятельность в посильных вопросах, и своевременное разъяснение учителя в вопросах, превышающих силы ученика, способствуют развитию и воспитанию таланта.