Смекни!
smekni.com

Развитие математических способностей учащихся в основной школе (стр. 5 из 12)

Задача разностороннего развития способностей должна дополняться не менее важной задачей выявления одаренных детей и предоставления им возможностей для дальнейшего развития. Иначе говоря, необходимо ориентироваться на такой подход в обучении, который, реализуя разностороннее развитие способностей каждого, одновременно максимально содействует росту способ­ностей к тем видам деятельности, к которым ученик проявляет наибольший интерес и может достичь наибольших успехов.

Для реализации данной концепции развития способностей необходимо: а) создать в учебных заведениях и внешкольных учреждениях условия, благоприятствующие формированию и развитию способностей учащихся; б) применить эффективные формы учебно-воспитатель­ной работы; в) применить рациональные методы и при­емы диагностики и развития способностей.

Как известно из психологии и педагогики, благопри­ятными условиями для воспитания способностей явля­ются:

· любовь к детям и педагогической деятельности, глубокое знание индивидуально-психологических и воз­растных особенностей учащихся, хорошее знание своего дела (содержания, форм и методов учебно-воспитательной работы);

· признание в учебном заведении в системе цен­ностей приоритета творческой деятельности и творчес­кой личности; творческий климат в учебном заведении и внешкольном учреждении;

· соблюдение в процессе уп­равления учебно-творческой деятельностью учащихся гуман­ного, демократического стиля общения;

· проблемное обу­чение; решение творческих задач; показ значимости орга­низуемой творческой деятельности для воспитания спо­собностей;

· сотрудничество (сотворчество) педагога и учащихся (осуществление совместных поисков условий и средств для развития творческих способностей); сам педагог как образец творческой личности с ярко выраженной уста­новкой на педагогическое творчество;

· уважение к лич­ности учащегося в сочетании с разумной требовательностью (анализ типичных ошибок и недостатков - только в доброжелательной форме);

· организация самостоятельной деятельности (все то, что учащиеся могут выполнить без по­мощи педагога, они должны выполнить самостоятельно);

· индивидуальный подход к учащимся в процессе выявле­ния и развития способностей;

· применение педагогом методов поощрения учащихся; выражение оптимизма и веры в творческие возможности учащихся;

· хорошая обеспечен­ность педагога научно-методической литературой и тех­ническими средствами обучения;

· высокий уровень вне­классной работы;

· система морального и материального поощрения творчески работающих педагогов; внедрение в практику работы учебного заведения передового пе­дагогического опыта;

· наличие дифференцированного обучения и т.д.

Для воспитания способностей большое значение име­ют следующие формы учебно-воспитательной работы: кружки, диспуты, семинары, конференции, КВН, экскур­сии, творческие уроки, факультативы, индивидуальное обучение, индивидуальный подход к учащимся, дифференциация обучения, коллективные формы обучения, иссле­довательская и опытническая работа, викторины, игры. конкурсы, клубы по интересам, кино-, изо- и фотосту­дии, научно-технические общества, фестивали, смотры, вечера вопросов и ответов, конкурсы, турниры, олим­пиады, лекции, беседы, выставки, практикумы, допол­нительные индивидуальные занятия с учащимися, домашняя работа учащихся и др.

Основные направления в развитии и формировании способностей предусматри­вают следующие мероприятия. Во-первых, выявление (диагностика) природных задатков к определенной деятельности и анализ качества результатов деятельности. Во-вторых, тренировка и развитие природных свойств личности путем ее включения в систематическую деятельное под руководством специалиста (учителя).

2.1.2. Принципы работы по развитию математических способностей учащихся.

В данном разделе описываются наиболее суще­ственные принципы работыпо развитию математических способностей учащихся, реализуемые как на уроках, так и на внеклассных занятиях. Принципы составлены Э. Ж. Гингулисом [5] на основе анализа опыта работы по развитию математических спо­собностей учащихся.

Принцип активной самостоятельной деятель­ности учащихся. Он требует от учителя четкого выделения времени на объяснение нового материала. Предпочтительно вводить теоретический материал довольно крупными порциями — тем самым быстро осознается достаточно полная система фактов, необходимых для решения за­дач по данной теме. Но после этого нужно отве­сти не часть урока, а одно или несколько заня­тий полностью на решение задач. Обычно ребя­там сообщают номера (или тексты) сразу всех 5—6 задач, которые будут решены на уроке или на кружке. Класс работает самостоятельно. Сильные учащиеся при этом загружены весь урок, хотя оформлять решение до конца для них необязательно, достаточно сообщить учителю о том, что получены верные ответы. Основная часть класса справляется с меньшим числом заданий, но при этом тоже работает самостоя­тельно. Роль учителя сводится к выборочному контролю, к занятию с отстающими.

Принцип учета индивидуальных и возраст­ных особенностей учащихся предполагает нали­чие у учителя четких представлений о возможностях каждого ученика, о динамике роста его потенциала. С учетом этой динамики нужно предлагать индивидуальные задачи. Они должны быть доступными для учащихся средних возможностей. Тем самым ребята предохраняются от обескураживающего действия неудачи. В то же время более способные ребята требуют трудных задач, на которых они могут испытать свои умственные силы. Подготовка индивидуальных заданий требует от учителя широкой «задачной эрудиции».

К методическим средствам реализации указанного принципа относятся краткие содержа­тельные обсуждения идей и методов решения.
На определенном этапе — на рубеже VII—VIII классов — учащиеся начинают понимать, что усвоение нового метода способствует успеху в большей мере, нежели дове­денное до конца «кустарное» решение.

Принцип постоянного внимания к развитию различных компонентов математических спо­собностей заставляет отметить сложность проявления этих способностей. Учителя почти никогда не знают, какой подход обеспечит дан­ному ученику наибольший успех и продвижение
вперед. Кажется логичным заключить, что наибольшие достижения возможны при доста­точном внимании ко всем компонентам мате­матических способностей.

Достигается это с помощью правильного под­бора тематики задач, рассмотрения различных подходов к решению одной и той же задачи. Полезны приемы, направленные на повышение удельного веса геометрических, наглядных соображений. Они экономят время урока, так как наглядность может заменить и словесную формулировку условия, и подробную запись решения.

При разборе задач очень важно помнить о принципе соревнования. Во внеурочных усло­виях хорошо зарекомендовали себя различные математические олимпиады, «бои» и т. д., но элементы состязания возможны и на уроке. К соревнованию побуждают следующие вопро­сы учителя: «Кто решит быстрее? У кого реше­ние получилось самое короткое? Самое простое? Самое неожиданное?» и т. д.

Иногда высказывается мнение, что соревно­вания травмируют, деформируют сознание школьников и в результате слабые учащиеся еще острее чувствуют свою отсталость, а луч­шие «математики» класса зазнаются. Эти опасе­ния имеют основания. Но существуют и меры компенсации: предлагаемые задания должны быть посильны. Следует учитывать также, что учащиеся VII — IX классов уже довольно трезво оценивают свои математические способности. Венгерский психолог Э. Гефферт установила, что высокоодаренность не сочетается с эгоцентризмом и негативными социальными установками. Э. Гефферт пришла также к следующему выводу: «С радостью выполненная деятельность оплачивает сама себя, причем не ожидается дополнительного признания».

Рассматривая задачи, доступные учащимся, нельзя забывать о принципе профессионализма. Он требует, чтобы школьники уверенно владели системой опорных задач. Для этого нужна ежедневная работа по закреплению навыков, повторению ключевых идей и методов. Кроме того необходимо следовать принципу яркости. Это означает, что занятия должны быть разнообразны по форме и интересны по содержанию. Свою подлинную увлеченность предметом учитель может продемонстрировать подбором красивых и разнообразных задач, рассказами из истории математики.

На внеурочных занятиях есть возможность реализовать принцип полной нагрузки. Речь идёт о поддержании достаточно высокого уровня задач, предлагаемых на кружке или факультативе. Кроме того, имеется в виду повышенная скорость обсуждения решений и большая нагрузка на домашнюю работу ученика. Дома школьник в состоянии подготовить доклад по какому-то теоретическому вопросу, придумать красивую задачу, написать сочинение на математическую тему и т. д.