Смекни!
smekni.com

Развитие математических способностей учащихся в основной школе (стр. 4 из 12)

Б.В. Гнеденко [6] выделяет следующие свойства математического мышления: 1) способность улавливать нечеткость рассуждения, отсутствие необходимых звеньев доказательства; 2) привычку к полноценной логической аргумента­ции; 3) четкую расчлененность хода рассуждений; 4) лаконизм; 5)точность символики.

С.И. Шварцбурд считал, что главным элементом мате­матического воспитания следует признать воспитание творческой деятельности учащихся, и выделял компоненты «математиче­ского развития», которые рассматриваются в методической литературе: развитие пространственного представления; уме­ние отделить существенное от несущественного; умение абст­рагировать; умение абстрактно мыслить; умение от конкретной ситуации перейти к математической формулировке вопроса, к схеме, сжато характеризующей существо дела; обладание навыками дедуктивного мышления; умение анализировать, разбирать частные случаи; применение научных выводов на конкретном материале; умение критиковать и ставить новые вопросы; владение достаточно развитой математической речью, как письменной, так и устной; обладание достаточным терпе­нием при решении математических задач.

Самое значительное исследование психологов по данной проблеме принадлежит В.А. Крутецкому и изложено в его книге «Психология математических способностей школьников».В. А. Крутецкий даёт следующее определение математическим способностям: "Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики". Собранный В. А. Крутецким материал позволил ему выстроить следующую общую схему структуры математических способностей в школьном возрасте.

1. Получение математической информации.

1) Способность к формализованному восприятию математического материала, схватыванию формальной структуры задачи.

2. Переработка математической информации.

1) Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.

2) Способность к быстрому и широкому обобщению математических объектов, отношений и действий.

3) Способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.

4) Гибкость мыслительных процессов в математической деятельности.

5) Стремление к ясности, простоте, экономности и рациональности решений.

6) Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).

3. Хранение математической информации.

1) Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним).

4. Общий синтетический компонент.

1) Математическая направленность ума.

Выделенные компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, целостную структуру, своеобразный синдром математической одаренности, математический склад ума.

Не входят в структуру математической одаренности те компоненты, наличие которых в этой системе не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее, степень их развития) определяют тип математического склада ума. Не являются обязательными в структуре математической одаренности следующие компоненты:

1. Быстрота мыслительных процессов как временная характеристика.

2. Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме).

3. Память на цифры, числа, формулы.

4. Способность к пространственным представлениям.

5. Способность наглядно представить абстрактные математические отношения и зависимости.

1.2.3. Классификация математических способностей.

Исходя из всего вышесказанного и основываясь на компонентах (параметрах) математических способностей, вы­явленных математиками, педагогами и психологами в нашей стране и за рубежом, проведу систематизацию этих параметровпредложенную В.А. Гусевым в его работе «Психолого-педагогические основы обучения математике».

Классифицируя составляющие математических способностей, автор пришёл к выводу, что прежде всего их можно распределить по двум основным блокам: в первый блок входят общие характеристики мышления или умственной деятельности (формулировки этих качеств личности формально не связаны ни с какой специальной математической деятельностью); ко второму блоку относятся параметры математических способностей, непосредственно связанные с математической деятельностью учащихся. Совершенно ясно, что эти параметры следует идентифицировать по уровню их сложности, продвинутости и т. д. Отме­чу при этом, что все составляющие взяты автором из соответствующих исследований, выполненных к настоящему времени.

Итак, рассмотрим один из возможных вариантов классифи­кации составляющих (параметров) математических способно­стей учащихся (см. Приложение 1).

Оценивая предложенную классификацию параметров математических способностей, можно сделать следующие выводы.

1.Отличительной чертой данной классификации является ее направленность на целостное формирование личности каж­дого школьника, и в этой связи ее многогранность.

2. Бросается в глаза большое пересечение указанных па­раметров с общими целями обучения математике, сложность этих взаимосвязей. Важно отметить, что фундаментом во всем этом многообразии являются мыслительные процессы, это вы­двигает на первый план процессы формирования приемов мыслительной деятельности.

3. Построенная классификация играет немаловажную роль
в диагностике параметров математических способностей учащихся и позволяет дифференцировать их по уровням владе­ния теми или иными приемами мыслительной деятельности.

4. Особенно важно, что здесь выделяются некоторые врож­денные параметры (задатки), о которых нам известно не­многое.

Выводы.

Под математическими способностями следует понимать специальные особые способности, которые необходимы для успешного выполнения математической деятельности. Математические способности являются не единым образованием, а имеют сложную многогранную структуру. Успешность математической деятельности зависит не от отдельно взятой способности, а от комплекса способностей. Математическая одарённость предполагает наличие определённых природных предпосылок и проявляется только в творческой деятельности. Однако не следует забывать, что каждый человек (ученик) обладает в определен­ной мере математическими способностями. Оценить и развить эти способности — задача педагогов.

Глава II.

Методика развития математических способностей.

Раздел 1. Общая методика.

2.1.1. Общие положения теории развития способностей.

Диалектико-материалистическая концепция развития способностей, преобладающая в отечественной психологии, опирается на следующие положения. Все психические явления, включая способности, являются вторичными образованиям по отношению к объективному миру, образу жизнедеятельности человека, его обучению и воспитанию, которые служат причиной, источником психического развития. Анатомо-физиологические задатки выступают лишь необходимые условия развития человека и его способностей. Способности имеют общественно-исторический характер. Их разнообразие порождено большим количеством исторически сложившихся видов деятельности, профессий, специальностей. Способности в своем развитии в основном определяются образом жизни и деятельности и изменяются с изменением жизнедеятельности. В формировании и развитии способностей решающую, определяющую роль играют внешние условия, обучение и воспитание в самом широком смысле слова, те виды деятельности, которые выполняет человек. Личность формирует и развивает свои способности в процессе усвоения и приумножения опыта прошлых поколений, воплощенного в продуктах материальной и духовной культуры. Формирование и развитие способностей определяется не только достигнутым уровнем культурного развития страны, наличием продуктов культуры, в которых воплотились способности человека, а прежде всего эффективностью способов усвоения (присвоения), созидания и усовершенствования этих продуктов в процессе рационально организованной деятельности. Причем не всякая деятельность развивает и формирует способности человека. Рассматривая общ­ую структуру жизнедеятельности человека, нетрудно заметить существование видов деятельности, не развивающих, а наоборот, отвлекающих и даже тормозящих развитие его основных способностей. Так, если человек, имеющий музыкальные или изобразительные наклонности задатки, вынужден заниматься тяжелым физическим трудом, то эта деятельность вряд ли будет развивать его потенциальные способности к музыке и живописи. Когда говорят о развивающей деятельности применительно к отдельному индивиду, то имеют в виду, что она, во-первых, выступает как значимая для него, как деятельность, вокруг которой аккумулируются и реализуются все возможности человека. Поэтому, чтобы понять, является ли данная деятельность развивающей, ей необходимо дать личностную характеристику. В этом смысле даже профессиональная деятельность, проходя­щая через всю жизнь человека, не всегда может быть значимой для индивида. Главным признаком значимости деятельности является то, что он идет на свою работу как на праздник, с большим воодушевлением. Во-вторых, такая деятельность должна быть организована в соответствии со следующими принципами: носит не репродуктивный, а творческий (во всяком случае субъективно-творческий) характер; отвечает принципам развивающего обучения, которое ведется на повышенном уровне сложности и опережает развитие, ведя его за собой, ориентируясь на те компоненты способностей, которые еще не полностью сформировались и которые формируются под влиянием такого обучения; деятельность положительно мотивирована: учащиеся испытывают чувство большой радости, совершая ее, и отчетливо понимают свои недостатки и допускаемые ошибки, видят результаты своих действий, осознают и объективно оценивают свое продвижение к цели на каждом этапе деятельности, заметно переживают успехи и относительные неудачи.