Смекни!
smekni.com

Обобщения при обучении решению математических задач (стр. 5 из 12)

При изучении методов решения математических задач индуктивные обобщения могут осуществляться следующим образом:

1) обобщение и систематизация способов решения конкретных задач до методов решения класса задач;

2) обобщение и систематизация методов решения класса задач.

Для систематизации знаний учащихся, приобретенных при решении конкретных задач, полезно делать обобщения решений до метода решения класса задач.

Пример 12: обобщение и систематизация методов решения задач о длине окружности и площади круга.

После решения ряда задач с применением формул длины окружности и площади круга в 9 классе на уроке геометрии можно провести с учащимися обобщающую беседу.

Основными при изучении темы «длина окружности и площадь круга» являются шесть объектов: R– радиус, С – длина окружности, S – площадь круга, угол с градусной мерой

, L – длина дуги, Sc – площадь сектора.

В беседе следует отметить, что формула длины дуги это обобщенный случай формулы длины окружности, то есть когда угол равен 3600. Аналогичное обобщение можно провести и с формулой площади круга до формулы площади сектора. Тогда количество объектов уменьшится с шести до четырех и можно рассмотреть два основных соотношения между ними:

,
.

Если заданы два компонента из четырех, то две оставшиеся могут быть вычислены. Таким образом, возможные типы задач определяются данными: 1) L,

; 2) S,
, 3) R,
, 4) L, R, 5) S, R, 6) S, L.

Если же речь идет о длине окружности и площади круга, то количество типов задач уменьшается. Целесообразно провести специализацию и рассмотреть этот случай. Обобщение показывает взаимосвязь нахождения длины окружности и длины дуги окружности, площади круга и площади сектора, так как такие громоздкие формулы плохо запоминаются учащимися.

Такие обобщения позволяют выявить связи изучаемого с изученным ранее и сформировать как общие методы решения классов задач, так и систему методов решения задач.

Индуктивные обобщения методов решений задач, а так же их систематизация приводят к формированию системы советов решающему математическую задачу.

2.1.3 Обобщение способов поиска решения многих задач до системы советов

В процессе решения задачи деятельность учащегося направлена на понимание задачи, осуществление поиска ее решения. Таким образом, она направлена на осознание, систематизацию и выяснение той информации, которая является явной в задаче.

Советы при решении различных задач должны обладать общностью, должны быть естественны и просты.

Все советы можно разделить на четыре группы, которые соответствуют четырем этапам решения задачи: усвоение содержания задачи; составление плана решения задачи; реализация плана решения задачи; анализ и проверка правильности решения [30]. На первом этапе деятельности целью является достижения осознанного понимания словесной формулировки задачи. Взгляд на один и тот же факт или объект задачи с различных сторон помогает оценить связь объекта задачи с другими данными или внешней информацией. На втором этапе должны быть установлены связи различных объектов в задаче и выявлена связь с внешней информацией, с ранее приобретенным опытом. Учащийся должен внимательно, многократно и с разных сторон рассмотреть все компоненты задачи, их внутренние и внешние связи и осуществить составление плана решения задачи. На третьем этапе осуществляется сам план решения задачи, на четвертом – исследование полученного решения.

Такие этапы помогают направить ход мыслей в нужном направлении для достижения поставленной в задаче цели. Рассмотрим подробно систему советов, например, для составления плана решения задачи.

Это второй этап решения задачи, наступает, когда ученик вник в содержание задачи, ввел все обозначения, по необходимости сделал чертеж.

Для составления верного плана решения задачи необходима подготовка.

А). Для начала следует выяснить, известна ли какая-либо родственная задача? Аналогичная задача?

Пример 12.За одно и то же время велосипедист проехал 4 км, а мотоциклист – 10 км. Скорость мотоциклиста на 18 км/ч больше скорости велосипедиста. Найдите скорость велосипедиста.

Пример 13.Лодка за одно и то же время может проплыть 36 км по течению реки или 20 км против течения. Найдите собственную скорость лодки, если скорость течения реки 2 км/ч [17].

Задачи аналогичны по плану решения. В обеих для решения необходимо составить отношения расстояний к скоростям и приравнять. Общая формула выглядит следующим образом:

. Если при решении задач, одна уже была рассмотрена ранее, то другая может быть решена по аналогии.

Б). Подумать, известна ли задача, к которой можно свести решаемую?

Пример 14. Отрезки, концами которых служат внутренние точки противоположных сторон квадрата, перпендикулярны. Докажите, что эти отрезки равны [38].

Решение задачи упрощается, если заданная пара взаимно перпендикулярных прямых будет проходить через центр квадрата. Доказав равенство отрезков в этом случае, основная задача легко решается использованием признаков параллельности и определения квадрата. Таким образом задачу можно свести к следующей: Отрезки, концами которых служат внутренние точки противоположных сторон квадрата, перпендикулярны и пересекаются в центре квадрата. Докажите, что эти отрезки равны.

В). Если родственная задача неизвестна и свести данную задачу к какой-либо известной задаче не удается, то стоит воспользоваться советом: «Попытайтесь сформулировать задачу иначе». При переформулировании задачи либо пользуются определениями данных в ней математических понятий (заменяют термины их определениями), либо их признаками (точнее сказать, достаточными условиями).

Пример 15.Найти периметр правильного шестиугольника A1A2A3A4A5A6, если A1A4 = 2,24 см [1, №1131].

Для быстрого и более легкого нахождения плана

решения данной задачи, удобно к понятию «правильный

шестиугольник» добавить определяющий признак, что

«в правильном шестиугольнике».

Тогда задача примет вид: Найти периметр правильного шестиугольника

A1A2A3A4A5A6, в котором отрезки, соединяющие его центр с вершинами равны сторонам правильного шестиугольника, если A1A4 = 2,24 см.

Тогда, глядя на рисунок 1, становится ясен план решения задачи.

Г). Так же, составляя план решения задачи, следует задать себе вопрос: «все ли данные задачи использованы?» Выявление неучтенных данных задачи облегчает составление плана ее решения. Возможно, имеются «скрытые» данные.

Пример 16.Найти диагональ прямоугольного параллелепипеда, длина а, ширина b, высота h которого известны [30].

Так может случиться, что ученик, зная теорему Пифагора, найдет диагональ грани:

. Далее самостоятельное решение задачи будет для него уже затруднительно, тогда учитель, задав вопрос «все ли данные задачи использованы?», может помочь ученику в отыскании верного пути решения задачи.

Д). Иногда полезно следовать совету «Попытайтесь преобразовать искомые или данные». При этом данные преобразуют так, чтобы они приблизились к искомым.

Пример 17.Постройте треугольник, равновеликий данному четырехугольнику [38].

При отыскании решения данной задачи следует для начала преобразовать четырехугольник до параллелограмма, так как формулы площадей треугольника и параллелограмма сходны между собой.

Е). Если следуя предыдущим советам, вам не удалось составить план решения, то можно воспользоваться таким советом: «попробуйте решить лишь часть задачи», т.е. попробуйте удовлетворить лишь части условий, с тем, чтобы далее искать способ удовлетворить оставшейся части условий задачи. Этот совет можно расширить, развить до совета: «Расчлените задачу на более простые задачи».

Пример 18.В треугольнике ABC медианы AA1, BB1, CC1 пресекаются в точке M. Точки A2, B2, C2 являются соответственно серединами отрезков AM, BM, CM. Докажите, что

A1B1C1=
A2B2C2 [1, №1177].

Данная задача решается с применением центральной симметрии,

которая явно не видна (рис. 2). Тогда стоит разбить задачу на этапы:

1) установить взаиморасположение точек A1, B1, C1 иA2, B2, C2;

2) найти центр симметрии; 3) определить центральную симметрию.

Ж) В составлении плана решения задачи может помочь ответ на вопрос: «Для какого частного случая возможно достаточно быстро решить эту задачу?». Отыскав частный случай, можно воспользоваться решением задачи в найденном частном случае для более общего (но, может быть, не самого общего) случая. Так можно поступить, постепенно обобщая задачу до исходной, решаемой задачи. Совет: «Рассмотрите частные случаи задачной ситуации, решите задачу для какого-нибудь частного случая, примените индуктивные рассуждения».