Смекни!
smekni.com

Обобщения при обучении решению математических задач (стр. 4 из 12)

Иногда при полной индукции результат достигается в два этапа.

1. Выделение благоприятного частного случая – особого случая, более простого, чем общий. Решение этого частного случая;

2. Объединение частных случаев, к которым применимо ограниченное решение. Получение полного решения для общего случая.

Математическая индукция применяется с целью установления истинности математической теоремы в бесконечной последовательности случаев.

Пример 5.Докажем, что для всех натуральных nистинна формула

1) При n=1 формула верна:

2) Предположим, что формула верна для n=k.

3) Докажем, что формула верна для n=k+1, то есть

Это верно, так как

4) На основании принципа математической индукции сделаем вывод: формула верна для всех натуральных п.

Таким образом, индуктивные обобщения являются эвристическим приемом в обучении решению задач. Индуктивные обобщения используются в открытии математических закономерностей, при выводе метода решения задач. При решении задач индукция связана с дедукцией. Особенно это проявляется при решении задач методом полной индукции и методом математической индукции.

Вывод по первой главе.

В своей работе под обобщением будем понимать переход от единичного к общему, от менее общего к более общему за счёт выделения общих существенных свойств или отношений.

Роль обобщения при обучении решению математических задач состоит в расширении и углублении знаний, их систематизации; в формировании и развитии мотивации к изучению математики; усилении внутрипредметных связей, развитии творческого мышление и познавательного интереса в процессе обучения. Обобщение может использоваться как метод решения, как средство вывода метода решения задачи, при составлении новых задач.

В методике преподавания математики нет общепринятой классификации видов обобщений. В качестве приемов обобщений при обучении решению задач выделяют отбрасывание ограничений, введение параметра, видоизменение задачи.

Сравнение и анализ являются обязательными условиями всякого обобщения. Эффективность осуществления обобщений зависит от умения проводить анализ задачи.

Часто для решения сложной задачи удобно использовать решение более простой аналогичной задачи. Задачу, аналогичную данной по содержанию, легко можно решить тем же методом. Решение задачи, аналогичной данной, но более общей, может привести к открытию нового общего метода решения класса задач.

Индуктивные обобщения используются в открытии математических закономерностей, при выводе метода решения задач.


2. Методические рекомендации осуществления обобщений на уроках математики при обучении решению задач

Использование теоретических основ обобщений будет представлено в методических рекомендациях осуществления обобщений на уроках математики при обучении решению задач.

При обучении школьников решению задач можно выделить следующие обобщения:

1. Обобщения при обучении методам решения математических задач.

2. Обобщение как метод решения математических задач.

3. Обобщение как источник новых математических задач.

4. Обобщения задач ведущие к формированию математических понятий и теорем.

Так же необходимо выделить использование таблиц как средства обобщения при обучении решению математических задач.

2.1 Обобщение при обучении методам решения математических задач

Важную роль при обучении методам решения задач играют индуктивные обобщения. С их помощью осуществляется переход от одних методов решения задач к другим, более общим, которые можно применить к решению широкого класса задач. Также индуктивные обобщения подходов к решению задач позволяют создать систему советов эвристико – организационного характера.

В обучении методам решения математических задач можно выделить следующие индуктивные обобщения:

1) индуктивные обобщения способов решений конкретных задач до метода решения класса задач;

2) индуктивные обобщения методов решения задач;

3) обобщения и систематизации способов поиска решений многих задач до системы советов решающему математическую задачу.

Рассмотрим их подробно.

2.1.1 Обобщение способов решения конкретных задач до метода решения класса задач

Решение конкретной задачи часто может привести к методу решения класса задач. Таким образом осуществляется обобщение способа решения конкретной задачи до метода решения класса задач.

Выбирается конкретная задача, ее решение записывается в таблицу, состоящую из двух столбцов (табл. 1). В левом столбце – решение конкретной задачи, в правом – решение обобщенной задачи.

Пример 6. Найти число, 2% которого равно 12.

Табл. 1

Решение конкретной задачи Решение обобщенной задачи
Найти число, 2% которого равны 12 Найти число, если известен процент и его значение.
1. Найдем сколько составляет один процент от числа. для этого: 12:2=6 1. Нахождение числа, которое приходится на один процент заданного числа.
2.так как все число составляет 100%, умножаем число, полученное на один процент на 100: 6*100=600 2. Умножение полученного числа на 100.
Итак, число равно 600 6. Запись ответа

Решение рассмотренной конкретной задачи приводит и к такому обобщению: для того, чтобы найти число, если известно, сколько составляет конкретное число процентов от него, нужно найти, сколько составляет один процент заданного числа, а зачем умножить это значение на 100.

Специализация метода решения задач на отыскание числа, если известен процент и его значение позволяет решать все задачи этого класса.

Пример 7. Фабрика выпускает калькуляторы партиями. Брак в каждой партии обычно бывает 9 калькуляторов, что составляет 2% от общего количества. Сколько калькуляторов в одной партии?

Так же обобщение может осуществляться путем абстрагирования от конкретных сюжетов нескольких задач и построения общей математической модели для различных по фабуле задач.Математическая модель задачи производится переводом реально происходящих в действительности процессов и явлений на язык математики и позволяет показать применение математики как инструмента для математизации реальных практических ситуаций. Таким образом, моделирование является обобщением нескольких задач и методом решения различных классов задач.

Пример 8.Клоун на ходулях хочет показать мастер – класс и обойти всю арену по краям за 5 шагов и вернуться в исходное место, при этом для красоты шаги должны быть одинаковы. Помогите клоуну, указав ему путь по арене.

Пример 9.5 спасателей натягивают батут круглой формы для спасения человека. Как лучше спасателям держать батут, чтобы натяжение было наилучшим.

Сравнение и анализ геометрических моделей этих задач приводят к выводу: задачи, несмотря на различие формулировок, имеют одинаковые геометрические модели.

Абстрагируясь от конкретных фабул задач, формулируют обобщенную задачу: в окружность вписать правильный пятиугольник.

Понять, что для решения задачи необходимо только вписать правильный пятиугольник в окружность, мы смогли тогда, когда построили геометрическую модель задачи. Решение обобщенной задачи позволяет так же решать все задачи такого типа.

Обобщение применимо при переходе от конкретных задач к общим моделям их решения, а затем к методу решения класса аналогичных задач.

Пример 10: изучение пропорциональных зависимостей величин в 7 классе: скорость, время, расстояние (

); цена, количество товара, стоимость (
); производительность труда, время работы, объем работы (
). В основном, в сознании учащихся все эти задачи укладываются независимо друг от друга. В каждой задаче ее содержанию соответствует определенная группа величин, находящихся между собою в функциональной зависимости. Если абстрагироваться от конкретного содержания задач, то легко заметить, что во всех рассмотренных случаях задачные ситуации описываются с помощью двух функций:
.Это и есть простейшие математические модели прямой и обратной пропорциональности. Таким образом, задачи на различные прямо пропорциональные зависимости решаются с использованием модели у = к*х, а обратно пропорциональные – применением модели
» [20].

Так же распространено обобщение решения различных конкретных задач до метода решения класса задач.

Пример 11. Введение метода построения вспомогательных треугольников, который позволяет на протяжении изучения всего курса геометрии решать многие задачи на построение единым подходом, хотя они могут быть и различного содержания.

Суть метода – построение вспомогательных треугольников и использование их свойств и вновь полученных элементов для окончательного решения задачи [18].

Данные удобно представить в виде таблицы. [Приложение 8]

На анализе построение трех задач можно вывести общий метод построения всех задач такого класса, который записывается в последний столбец таблицы. При таком подходе учащиеся четко различают этапы метода.

2.1.2 Обобщение методов решения задач