Учитель, сообщая цель урока, обращает внимание учащихся на то, что ещё в глубокой древности было подмечено, что некоторые многочлены можно умножать короче, быстрее, чем все остальные. Так появились формулы сокращённого умножения. И сегодня им предстоит сыграть роль исследователей в «открытие » двух из этих формул.
Для исследовательской работы учащиеся объединяются в динамические группы. Номер задания соответствует номеру группы. Учащимся предложено выполнить умножение двучлена на двучлен из левого столбца таблицы. После того, как ребята справились с заданием, они записывают полученный ответ в правом столбце. Средняя часть таблицы в момент выполнения задания скрыта от учащихся.
Таблица 3
1 | ( х + у) (х + у) = | (х + у)2 | = х2 + 2 ху + у2 |
2 | (c+d) (c+d)= | (c+d)2 | =c2+2cd+d2 |
3 | (p+q) (p+q)= | (p+q)2 | =p2+2pq+q2 |
4 | (2+x) (2+x)= | (2+x)2 | = 4+4x+x2 |
5 | (n+5)(n+5)= | (n+5)2 | =n2+10n+25 |
6 | (m+3) (m+3)= | (m+3)2 | = m2+6m+9 |
7 | ( 8+k) (8+k)= | (8+k)2 | = 64+16k +k2 |
Когда учащиеся заполнили таблицу, учитель просит их выяснить, есть ли нечто общее в условиях и ответах предложенных упражнений и можно ли выражения в левом столбце записать короче. Получив ответ, учитель обращает внимание на то, что они фактически уже приступили к исследованию темы урока. Класс переходит к обсуждению полученных результатов. Ребята замечают, что во всех случаях результатом умножения служит трёхчлен, у которого первый член представляет квадрат первого слагаемого данного двучлена, второй - удвоенное произведение первого и второго слагаемых, а третий – квадрат второго слагаемого. Такой анализ делает каждая группа и каждый вариант проговаривается вслух. В конце концов учащиеся без труда записывают общую формулу квадрата суммы двучлена. И быстро «открывают» формулу разности квадрата двучлена.
При разработке фрагмента урока была использована следующая литература: [1].
5.7 Фрагмент урока для 7-го класса по теме «Теорема о сумме углов треугольника»
Тип данного урока - введение нового материала. Его основная цель – сформулировать и доказать теорему о сумме углов треугольника. При изучении данной темы используется проблемная ситуация, используя которую можно легко привести учащихся к трем различным способам доказательства теоремы о сумме углов треугольника, что придаст уроку и знаниям учащихся существенно новое качество.
Оборудование: чертеж.
Изложение нового материала – 13 мин.
Учитель ставит перед учащимися следующие проблемы:
ПРОБЛЕМА 1. «Как найти сумму углов треугольника?»
Естественное побуждение учеников – измерить углы и сложить их градусные меры.
ПРОБЛЕМА 2. «Как, не измеряя градусную меру углов, доказать, что их сумма равна 180є?».