Смекни!
smekni.com

Методика организации коллективной формы учебной деятельности учащихся на уроках математики в средней (стр. 4 из 14)

Сначала заготавливаются разные вопросы и задания по изучаемой теме. Каждый ученик получает один из текстов, отличный от всех. Все учащиеся работают в парах сменного состава в следующем порядке:

1. Один из работающих в паре задает вопросы по карточке, заготовленной учителем (например, дать определение, сформулировать какую-то теорему или свойство, решить задачу), другой пишет ответ на листочке.

2. Второй ученик (тот, который перед этим отвечал) задает вопросы по другой карточке, а первый отвечает.

3. Каждый берет листочек своего соседа и без подглядывания в карточку проверяет написанные им ответы.

4. Открывают карточку и проверяют второй раз (уже вместе).

5. Ученик, допустивший ошибки, под контролем соседа по парте, разбирается в своих ошибках и записывает их в тетрадь.

6. Снова берут листочки друг друга, еще раз все просматривают и ставят свои подписи: «Проверил Иванов», «Проверила Петрова».

После того, как задания выполнены, друг у друга проверены, пара распадается. Освободившиеся ученики образуют новые пары. Учащиеся в выборе партнера для совместной работы свободно перемещаются по классу, образуя новые диалогические сочетания обучают друг друга по своим карточкам-заданиям.

Решение задач в динамической паре:

Рис. 1

Переход к обучению в парах сменного состава или динамических парах возможен лишь в том случае, если учащиеся научились работать в постоянных парах и группах. Поэтому в качестве подготовительной работы чаще всего имеет место сочетание общеклассной и индивидуальной формы работы. Но на практике можно наблюдать, что не все активно участвуют в общеклассной (фронтальной) работе, так же как и не все могут индивидуально справиться с тем заданием, которое учитель предлагает для самостоятельной работы, так как всем дается одинаковое задание. Таким образом, учитель не может учесть уровень подготовленности и индивидуальные особенности каждого ученика. Такая работа может быть осуществлена с помощью дифференцированных заданий. Применяя на уроке дифференцированные задания, учитель тем самым выводит класс на коллективную форму обучения.

Пример 3: Повторение таблицы умножения путем решения числового кроссворда – Математика, 5 класс. Кроссворд выдается для каждого ряда. Каждый учащийся ряда решает один пример и передает кроссворд следующему. Ряд, первым верно разгадавший кроссворд – побеждает.


Числовой кроссворд

А Б В
Г
Д Е
Ж З

Рис. 2

По горизонтали:

А. 7 · 7 = … Б. 8 · 3 = … Г. 8 · 8 = …

Е. 8 · 7 = … Ж. 4 · 9 = … З. 6 · 7 = …

По вертикали:

А. 6 · 8 = … Б. 6 · 4 = … В. 9 · 5 = …

Г. 7 · 9 = … Д. 9 · 7 = … Е. 9 · 6 = …

Рассмотренные выше приемы форм коллективной работы применяются на отдельных этапах урока. Но на уроках обобщения и закрепления той или иной темы рекомендуется проводить коллективные учебные занятия, используя различные коллективные формы организации на протяжении всего урока.

В своих исследованиях Р.А. Утеева выделяет следующие методические приемы организации коллективной работы на этапе изучения нового материала: проблемная беседа, опыт, эксперимент, лабораторно-практическая работа, решение проблемно-поисковых задач [30]. Рассмотрим некоторые из них.

3.4 Лабораторные и практические работы

Лабораторные и практические работы существуют для усиления прикладной и практической направленности курса математики и развития способностей учащихся к самостоятельным исследованиям. Задания представляют собой относительно завершенный исследовательский цикл: наблюдение – гипотеза – проверка гипотезы. Выделяют следующие типы лабораторных и практических работ:

1) графические упражнения;

2) измерительные работы на местности;

3) работа с персональным компьютером.

Подобные работы могут быть реализованы на уроке и дома. Практически во всех работах учащимся приходится заполнять таблицы знаний. Учиться лучше всего вдвоем. В паре происходит одновременная работа, в которой участвуют сразу оба учащихся. От качества работы в паре зависят во многом итоговые результаты. Внутри пары может совершаться множество различных действий:

· обмен наблюдениями;

· обсуждение условий задачи;

· выработка алгоритма действий;

· разделение целого на части;

· анализ результатов.

Поэтому практические и лабораторные работы в курсе математики являются той деятельностью, в которой у учащихся рождается истина, новое знание или понимание математических законов на практике.

Пример 4: Лабораторная работа, позволяющая учащимся самостоятельно сформулировать геометрический смысл основного свойства первообразной – Алгебра и начала анализа, 11 класс.

Задания:

1. Найдите общий вид первообразной для функции f(x) = x + cosx.

2. Запишите две различные первообразные для этой функции.

3. Постройте графики для каждой из первообразных на одной координатной плоскости.

4. Определите, каким образом график одной первообразной может быть получен из графика другой.

5. Сформулируйте вывод в виде свойства.


3.5. Проблемная ситуация

«Проблемные ситуации» возникают в процессе деятельности субъекта, направленной на некий объект, когда субъект встречает какое-то затруднение, преграду. Например, когда для удовлетворения некоторой потребности субъекту недостаточно тех знаний о каком-то объекте, какими он располагает, то он оказывается в ситуации, являющейся проблемной.

Таким образом, проблемные ситуации образуются из следующих компонентов: действий субъекта, объекта его деятельности – преграды на пути осуществления цели его деятельности.

Преграда может быть самой различной природы: это и недостаток или несоответствие знаний, средств и способов их применения, и необходимость произвести какие-то неизвестные действия для достижения цели или сделать выбор между несколькими объектами.

Однако указанное условие возникновения проблемных ситуаций (преграда, затруднение на пути осуществления цели деятельности субъекта) является лишь необходимым, но недостаточным для того, чтобы он осознал, заметил эту проблему и чтобы он захотел ее устранить [31, с. 125].

Исследования проблемных ситуаций в мышлении и в обучении А.М. Матюшкиным показывают, что главная дидактическая трудность в создании проблемного задания заключается в том, чтобы выполнение учеником предлагаемой задачи привело к потребности в том знании или способе действия, который составляет неизвестное. «Искусство учителя заключается в том, чтобы представить подлежащие усвоению знания как систему неизвестных знаний, которые должны открыть учащиеся на уроке» [20, с. 101-102].

При организации коллективной формы учебной деятельности на этапе изучения нового материала (при создании проблемной ситуации) в основу положены три качественных уровня проблемного обучения В.А. Крутецкого [16]:

1. Учитель ставит проблему, формулирует ее, указывает на конечный результат, ученики самостоятельно ведут поиски решений этой проблемы, зная окончательный результат.

2. Учитель только показывает на проблему, а учащиеся формулируют и решают ее, при чем конечный результат им заранее не известен.

3. Ученики самостоятельно ставят проблему, формулируют ее и исследуют возможности и способы ее решения.

В своей статье Т.М. Карелина [12], исходя из собственного педагогического опыта, предлагает учителям математики использовать на уроках следующие проблемные ситуации:

1. Недостаток или несоответствие заданий, средств и способов их применения.

2. Необходимость произвести какие-то неизвестные действия для достижения цели.

3. Выбор между несколькими объектами.

Главное, чтобы учащиеся не просто увидели проблему, а поняли и захотели ее решить. Далее учащийся сам, под контролем учителя, должен пройти ряд этапов:

1) проанализировать ситуацию;

2) точно сформулировать учебно-познавательную проблему;

3) грамотно выдвинуть гипотезу;

4) проверить, хватит ли ему знаний для решения проблемы;

5) доказать гипотезу на основе полученных знаний.

Создание проблемной ситуации требует от учителя овладения следующими методическими приемами:

1. Постановка перед изучением новой темы такого домашнего задания, которое поставит школьника в тупик.

Пример 5: Дана прямая l и две точки А и В вне ее. Найти такую точку С, чтобы угол АСВ был прямой – Геометрия, 7 класс. При проверке задания задается вопрос: «Нельзя ли решить задачу с помощью циркуля и линейки?». Он побуждает учащихся проанализировать свои действия и понять, что они сами того не ведая, выявили новое свойство.

2. На этапе подготовки к изучению новой темы учащимся предлагается выполнить действия на первый взгляд не вызывающие затруднений.

Пример 6: Построить треугольники по трем заданным углам – Геометрия, 7 класс.

1)

2)

3)

Учащимися выдвигается предположение о внутренних углах треугольника. Учитель задает провокационный вопрос: «По вашему мнению, в каком треугольнике сумма углов больше, в остроугольном или в тупоугольном?» Предлагается практически проверить это.

3. Вызов у учащихся на этапе изучения новой темы познавательного затруднения, возникающего в результате побуждения учащихся к сравнению, сопоставлению и противопоставлению фактов, изученных ранее.

Пример 7: При изучении темы о формуле корней квадратного уравнения учитель обращает внимание на примеры, решенные на предыдущем уроке и дома способом выделения квадратного двучлена, и предлагает решить уравнение: x2 + 8x – 10 = 0.