Смекни!
smekni.com

Зміст поняття задача у навчанні математики в початкових класах (стр. 2 из 3)

Для з'ясування життєвого змісту задачі використовується предметне моделювання, інсценування, практичне виконання дій, наочні посібники, тощо. Моделюванням є і мислене відтворення ситуації.

Вербальний аналіз в широкому розумінні містить семантичний аналіз і знаходження способу розв'язанім задачі.

Суть семантичного аналізу полягає в тому, що на основі аналізу тексту задачі визначають окремі значення величин, а також відношення, що їх пов'язують. Таким аналізом передбачається: а) поділ задачі на окремі частини, кожна з яких є словесним завданням певного елемента задачі; б) визначення слів - ознак, що характеризують відношення між величинами, а отже, й відповідну арифметичну дію.

Під час аналізу треба з'ясувати, скільки величин розглядається в задачі та які вони мають значення. Задавання кожного значення величини складається з трьох частин: назви величини, зазначення особливості певного значення і числового значення, якщо воно є невідомим, і якщо, крім того, до завдання цього невідомого значення входить запитання «скільки?» чи вимога «знайти», то це значення шукане (Фридман Л.М. Лошко - психологический анализ школьных учебных задач М: Педагогика, 1977, с.158).

Є два способи аналізу задачі: синтетичний і аналітичний. Синтетичний спосіб - від числових даних - до запитання, аналітичний - від запитання - до числових даних. Синтетичний спосіб легший для дітей, але його недолік в тому, що ми неначе задачу розкладаємо на ряд простих задач які розв'язуємо. Аналітичний - сприяє розвитку мислення учнів. Використання наочності та короткого запису задачі в процесі вивчення її змісту та пошуку плану розв'язування.

Вибір ілюстрації до задачі, повнота її налізу, ступінь самостійності учнів у розв'язуванні залежить від новизни і складності самої задачі. При цьому треба мати на увазі, що основна навчальна мета - розвинути в учнів уміння самостійно розв'язувати задачі - досягається тривалою практикою розв'язування задач як з використанням наочності, так і без неї. Отже в застосуванні наочності треба дотримуватися певної міри.

Мета використання ілюстрації - виявити величини про які йдеться в задачі, та з'ясувати зв'язки між ними. Предметна ілюстрація допомагає створити уявлення про життєву ситуацію, описану в задачі, і тим самим сприяє правильному вибору дій та їхньої послідовності. На початку навчання, щоб учні могли побачити зв'язок між даними числами і шуканими, іноді не досить лише демонструвати наочні посібники, треба, щоб кожен учень сам виконав операції з дидактичним матеріалом. Такими операціями можуть бути розкладання паличок чи кружечків, малювання кружечків, дії з смужками паперу. Особливо потрібні предмети операції під час розгляду задач на знаходження невідомого компонента арифметичної дії.

Ілюстрація у вигляді короткого запису (схематичного, табличного) чи рисунка фіксує у зручній для сприймання формі величини (дані і шукані), допомагає розкрити залежності між ними.

Розв'язати задачі з використанням короткого запису слід у таких випадках:

- при початковому розв'язуванні простих задач, коли цей процес є переходом від операцій над множинами предметів до арифметичних дій над натуральними числами;

- при розв'язуванні простих і складених задач з метою формування в учнів уявлення про структуру задачі;

- при використанні задач для формування математичних понять, ознайомлення учнів із елементами арифметичної теорії чи залежностями між величинам;

- при початковому ознайомленні учнів з задачею нового виду (не завжди) а також тоді, коли багато учнів не можуть самостійно розв'язати задачу.

Учнів слід поступово привчати до короткого запису задачі. Вони повинні знати, що в короткому записі треба використовувати слова, які визначають дію або залежність між даними і шуканою величинами. Зв'язані між собою дані слід записувати в одному рядку; число, яке є сумую кількох даних, записувати справа або зліва від них і відокремлювати рискою, запитання задачі позначити знаком запитання або буквою х. у табличній формі два значення тієї самої величини треба записувати одне під одним.

Короткий запис задачі - це засіб навчання, а не складова частина програми з математики. Тому при проведенні контрольної роботи не можна вимагати від учнів, щоб вони робили короткий запис задачі.

Розбір задачі може супроводжуватися записом математичних виразів, що відображують ті зв'язки, які в ній описано словесно. Проте записи таких виразів є складовою частиною процесу розв'язування задачі.

Короткий запис запроваджується в першій чверті другого класу.

4. Розв'язування задачі

Задачі розв'язуються усно або письмово: усно це без запису арифметичних дій у зошит, письмово із записом дій у зошитах, У початкових класах більше половини всіх задач доцільно розв'язувати усно.

Усне розв'язування задач часто проводить в умовах ігрових ситуацій. Зручна для цього гра «в магазин» та гри на «відгадування чисел».

Письмове розв'язування. Культура запису розв'язання задач:

В оформленні записів розв'язування задач слід керуватися методичними лисом Міністерства освіти України про єдині вимоги до усного і письмового мовлення, який періодично перевидається. Розглянемо вимоги до оформлення письмового розв'язання задачі з цією метою подаємо зразки коротких записів та розв'язання задач.

1 клас. У першому класі учні розв'язують тільки прості задачі. Запис розв'язання виконується у вигляді прикладу, розміщеного посередині рядка.

Першокласникам іноді пропонується зобразити предмети, про які йдеться в задачі, здебільшого використовують кружечки, палички, трикутники, квадрати. У цьому разі розв'язання записують під рисунком (рис.1).

7-2=5

Рис 1

2 клас. Короткий запис задачі запроваджується в першій чверті. Ще в процесі розв'язання простих задач учням варто показати, як коротко записувати задачу в один рядок, табличним способом і у вигляді структурного запису.

1. На квітах сиділо 6 метеликів. Потім 3 метелики полетіли. Скільки метеликів залишилося на квітах?

6м., З м., (запис у рядок)

2, Від дошки завдовжки 12 дм відрізали для ремонту шпаківень кусок завдовжки 7 дм. Скільки дециметрів дошки ще залишилося.

Було Відрізали Залишилось

12 дм 7 дм ?

Це таблична форма запису.

3. Учні посадили 10 лип, а каштанів на 2 менше. Скільки каштанів посадили учні?

Структурний запис задачі:

Л. – 10

К. – ? на 2 менше.

До ознайомлення Із складеною задачею учні ще не роблять короткий запис задачі у зошиті, вони розглядають його на дошці з опорою на цей запис повторюють задачу, але розв'язання виконують так само як і в першому класі.

Після ознайомлення із складеною задачею (в кінці першої чверті) учні вчаться записувати коротко задачі в зошит, але виконують такі завдання за зразком і під керівництвом учителя. На цей час запроваджується найменування предметів у відповідях дій. Назви записують однією буквою з крапкою в дужках після числа: І З-6-У (в.), у відповідях до задачі назви предметів пишуть повністю (7 вагонів).

Слова, які починаються на голосний, скорочують до наступного голосного.

Висока якість оформлення письмових робіт з математики запобігає помилкам, які виникають через нечітке написання цифр, безсистемне розміщення записів. Привчаючи учнів до охайного і правильного виконання завдань, учитель виховує в них повагу до праці, сумління до обов'язків, звичку до чистоти і порядку.

5. Перевірка розв'язання

Перевірка розв'язання та обґрунтування доведень є складовою частиною і характерною рисою математичної діяльності. Учні початкових класів не відчувають потребу в обґрунтуванні своїх суджень. Тому перевірку розв'язання задачі вони сприймають лише як вимогу вчителя

Перевірити розв'язання задачі – це з'ясувати, правильне воно чи ні. Для вчителя цей процес є засобом виявлення прогалин у знаннях учнів, а в поєднанні з аналізом та оцінкою - засобом виховання інтересу до вивчення математики. Проте така перевірка не вичерпує всієї проблеми. Треба поступово виховувати в дітей почуття необхідності самоперевірки, ознайомлювати їх із найбільш доступними прийомами перевірки. З цією метою слід проводити бесіди, в яких аналізувати допущені учнями помилки. Під час таких бесід розкривати особливість математики та інші фахівці дбають про „правильність результатів; показувати, до яких негативних результатів можуть призвести допущені у розв'язанні задачі помилки.

Є декілька прийомів перевірки правильності розв'язання задач (простих і складних). У 1-4 класах доцільно поступово запроваджувати такі прийоми перевірки: порівняння результату, яки дістали учні в процесі розв'язання задачі, з відповіддю вчителя, встановлення відповідності результату й умови, розв'язування задачі різними способами; складання і розв'язання обернених задач, попередня прикидка числових меж шуканого результату функції перед етапами.