Другим предметом выхода математики за предел может служить возникновение математической логики. Она изучает: какие предложения можно выводить из данных посылок данными средствами. Отношения между посылками и средствами аксиомами и теоремами не сводятся к количественным отношениям в обычном смысле. Они лишь сходны с количественными и эти сходства открыли возможность применения математических методов их исследования.
Определение Энгельса применимо и к предмету современной математике, если содержащиеся в нем выражения: количественные отношения и пространственные формы понимать в более широком смысле, чем оно понималось в период классической математики (включая в этот смысл отношения и формы лишь сходные с количественными отношениями и формами). Это сходство состоит в том, что некоторые отношения и формы действительности объективно обладают такой же степенью безразличия к содержанию, как и количественные отношения и пространственные формы. И так же, как и последние могут быть отвлечены от содержания и определены в общем виде с такой ясностью и точностью, с сохранением такого богатства связей, чтобы служить основанием для чисто логического развития теории. Если такие отношения и формы назвать количественными, то придем к определению Энгельса.
Развитие человеческого общества невозможно без передачи определенных знания и опыта предшествующих поколений. Поэтому школьная математика должна давать представление о науке в целом, о математических методах в приложениях, способствовать развитию математического мышления. Содержание учебного предмета математики изменяется, так как появляются требования к школьной подготовке возникают тенденции к усилению общего развития учащихся, меняется познавательное значение и прикладная ценность отдельных ее разделов, совершенствуются методики математики, учитывающая достижения передового опыта преподавателя.
В настоящее время учебные программы по математике в школе включают:
начальный курс – 1-4 классы;
I ступень – 5-6 кл. в данный математический курс, «Математика», включающий арифметику и начала алгебры и простейшие геометрические понятия, построения т.е. пропедевтические курсы алгебры и геометрии.
II ступень – 7-9 кл. Изучающие два предмета: систематический курс алгебры и систематический курс геометрии (планиметрия);
III ступень – 10-11 кл. продолжают изучать систематический курс геометрии (стереометрия) и изучает систематический курс «Алгебра и начала анализа», включающий:
арифметику (учение о числе);
алгебру (тождественные преобразования, уравнения и неравенства);
математический анализ (функции, производные);
аналитическую геометрию (метод координат).
Такое соединение различных математических дисциплин в школьном курсе обусловлено тем, что
в учебном предмете должны быть достаточно полно представлены основы современной науки, причем в доступной для учащихся форме;
между различными разделами науки, представленными в учебном предмете, должны существовать определенная взаимосвязь, обеспечивающая их систематическое изучение.
4. Цели и содержание обучения математики
Цели и содержание математического образования зафиксированы в учебных программах, учебниках и учебных пособиях по математике. Постоянное развитие общества приводит к периодическому пересмотру целей и содержание образования в соответствии с поставленными обществом требованиями.
Исходя из общих целей средней общеобразовательной школы, из специфики математики как науки, ее роли и места в современной системе наук, в технике и производстве, ее значение в жизни современного общества, определяются цели обучения математике в средней общеобразовательной школе.
Цели – это планируемые результаты обучения, на достижение которых будет направлена совместная деятельность учителя и ученика в процессе обучения математике.
Комплексное осуществление образования, воспитания и развития учащихся в общеобразовательной школе выделяет три функции обучения и три группы целей: общеобразовательные, воспитательные и развивающие.
Общеобразовательные цели:
Математика является одним из опорных предметов средней школы. Она обеспечивает изучение других дисциплин: физики, химии, основ информатики и вычислительной техники и т.д. Математические знания, умение и навыки необходимо для трудовой и профессиональной подготовке школьников. Образовательные функции обучения математике выступает как главное и определяемая. Школьный курс математики обязан:
– обеспечить прочное и осознанное овладение учениками системой математических знаний, умений и навыков, определенных школьной программой;
– вооружить учеников доступными для них математическими методами познания действительности;
– содействовать политехническому образованию учащихся (раскрывать идеи применения математики в решении тактических задач, формировать умение и навыки по обращению с приборами, инструментами, таблицами, с учебной и справочной литературой, воспитывать алгоритмическую культуру и знакомить учеников с современной вычислительной техникой и т.д.)
Воспитательные цели:
Воспитательный характер обучения объективная закономерность. Реализация образовательной и воспитательной функции осуществляется в процессе обучения математике в единстве. Исходя из возможностей предмета, математика вносит свой вклад в формирование мировоззрения, моральное трудовое и эстетичное воспитание учеников. Воспитательные цели обучения математике сводятся к следующему:
– формирование у школьников правильного представления о природе математики, сущности и происхождения математических абстракций, характере отображения математической наукой явлений и процессов реального мира, месте математики в системе наук и роли математического моделирования в научном познании;
– содействовать моральному воспитанию учеников, что означает развитие таких моральных черт личности как настойчивость, целенаправленность, самостоятельность, ответственность, трудолюбие, критичность мышления;
– проведение работы по трудовому воспитанию и профориентации учеников;
– осуществление эстетического воспитания: показывать внутреннюю гармонию математики, формировать понимание красоты и изящества логических доказательств, математических рассуждений; учить оценивать красоту постановки математической задачи, процесса ее решения и результатов; раскрывать связь математики с архитектурой, живописью, музыкой, скульптурой и др.
Развивающие цели:
В процессе обучения математике проводится систематическая и целенаправленная работа по общему развитию учащихся. Обучение и развитие – два взаимосвязанных процесса. Известно, что обучение ведет за собой развитие. Оно более успешно проходит в том случае, если несколько забегает вперед, ориентируясь на зону ближайшего развития ученика. Общими развивающими целями обучения математике являются:
– развитие познавательных интересов учащихся к математике;
– развитие таких способностей, как наблюдательность, представление, память, мышление, речь;
– формирование и развитие умений использовать рациональные приемы учебной работы (умение учится).
В процессе обучения важно добиваться математического развития школьников. Известный педагог С.И. Шварцбург выделяет следующие компоненты математического развитие учащихся:
– развитие пространственных представлений;
– умение выделять существенное, мыслить абстрактно;
– умение переходить от конкретной ситуации к ее математическому описанию;
– навыки дедуктивного мышления;
– умение анализировать;
– умение использовать знания при решении практических задач;
– критичность мышления;
– владение математической речью;
– терпение при решении задач.
По его мнению математическое развитие учеников не может быть обеспечено только программой, а необходимо настойчивая и очень хлопотливая работа учителя.
Термин «Элементарная математика» обозначает два различных понятия. С одной стороны, этим термином обозначают всю математику до 17 века, т.е. «Совокупность таких разделов, задач и методов математики, в которых не пользуются общими понятиями переменной, функции, предела и тем более общим понятием множества», иначе говоря, традиционная элементарная математика (ТЭМ), содержащая арифметику, алгебру, геометрию и тригонометрию и потому имеет лишь историческое значение. С другой стороны, элементарной математикой обозначают школьный предмет, т.е. совокупность математических дисциплин, изучаемых в средней школе, которая изменяется под влиянием развития математической науки и потребностей общества и обладает признаками:
элементарна в смысле начальной, составляющей основы современной математической науки;
элементарна в смысле достаточной простоты и доступности для учащихся средней школы. Другими словами, современная элементарная математика (СЭМ) – это не только и не столько традиционное содержание школьного курса математики, сколько то новое содержание, которое находится в стадии разработки и станет предметом будущей педагогической деятельности.
Проблема содержания обучения является самой сложной и важной проблемой школьного математического образования. Необходимо «отображать такой минимум знаний, который, является стабильным, политехнически ориентированным, включал бы воспитательный аспект и в тоже время был бы достаточным для дальнейшего пополнения знаний, для формирования современного научного стиля мышления и не приводил бы перегрузке учеников».