·
·
·
·
·
8. Найдите область определения выражения.
1)
2)
9. Решите неравенство
1)
2)
3)
III.Применение алгоритма
1. Решите неравенство.
1)
2)
3)
4)
2. Найдите общее решение х2+6х-7 ≤ 0 и х2-2х-15 ≤ 0
3.Решите систему неравенств.
1)
2)
3)
4.Катер должен не более чем за 4 часа пройти по течению реки 22,5км и вернуться обратно. С какой скоростью относительно воды должен идти катер, если скорость течения равна 3км/ч.
5.Решите неравенство методом интервалов.
1)
2)
3)
6.Решите неравенство.
1)
2)
3)
§4 Опытное преподавание.
Факультативное занятие в девятом классе (решение неравенств с параметром первой степени с одной неизвестной).
Цель:
применить алгоритмический метод при формировании умений и навыков в решении линейных неравенствах с параметрами.
Задачи:
· расширить кругозор учащихся;
· воспитание внимания, аккуратности, самостоятельности;
· осуществление взаимосвязи теории и практики;
· развитие памяти, логического мышления.
Решение задач с параметрами всегда вызывает большие трудности у учащихся. Причём часто учащиеся испытывают психологические трудности, «боятся» таких задач, так как не видят связи в их решении с решениями линейных неравенств с одной переменной.
Изучение линейных неравенств с параметром первой степени с одной неизвестной не возможно без умения решать линейные неравенства с одной переменной. Так как факультатив проводился в 9 классе, а линейные неравенства изучались в восьмом классе, то возникла необходимость актуализировать знания по решению линейных неравенств, вспомнить этапы их решения. Ученикам можно предложить следующее задание.
Решите неравенство 2(х+5)-3≥4+3х
Все решают у себя в тетрадях, а один ученик решает у доски. Запись ведёт в два столбика. Решение в одном столбика, а в другом записывают пояснения к своим действиям.
2х+7≥4+3х Раскрыли скобки в обеих частях неравенства2х-3х≥4-2 Перенесли слагаемые, содержащие переменную в одну
часть, а не содержащую в другую.
-х≥2 Привели подобные члены в каждой части.
х≤-2 Разделили обе части неравенства на коэффициент при
переменной (учитывая его знак !). Отметили соответствующие промежутки накоординатной прямой.
х
(-∞;-2] Записали числовой промежутокПосле того как повторили этапы решения линейных неравенств с одной переменной, учитель предлагает на доске подробный разбор решения неравенства с параметром. Затем ученики вместе с учителем формулируют алгоритм решения линейных неравенств с параметром.
Пример 1. Рассмотрим решение неравенства (а-4)∙х<12
Чтобы найти х, обе части неравенства хочется разделить на (а-4). Однако теперь важно положительно, отрицательно или равно нулю выражение (а-4).
Определим знак выражения