Специальное обучение процессам распознавания, преобразования и выяснения возможностей их алгоритмизации выступает, поэтому как важная задача, решение которой имеет существенное значение для практики и теории обучения.
§ 6 Этапы изучения алгоритма в школе.
Следует различать 2 смысла, в котором может употребляться выражение «алгоритмизация обучения».
1. Под алгоритмизацией обучения понимают алгоритмизацию деятельности учителя; составление и использование алгоритмов обучения.
2. Алгоритмизация деятельности учащихся, то есть не что иное, как обучение алгоритмам.
Открытие алгоритмов решения математических задач привело к коренному изменению в практике обучения математике: алгоритмам стали учить, и это во много раз облегчило и ускорило овладение этим предметом. В то же время учебный процесс ни в коем случае не должен и не может быть сведён только к обучению алгоритмам.
В обучении учащихся алгоритмам можно идти разными путями:
1) Давать учащимся алгоритм в готовом виде. Такой путь не является лучшим, но позволяет экономить время.
2) Гораздо более ценно, когда ученик открывает соответствующие алгоритмы сам или с помощью учителя.
3) Подбор учителем таких упражнений и задач в ходе решения, которых у учащихся будут формироваться нужные системы операций.
Формирование алгоритмического процесса идёт более успешно, когда эти различные пути соединяются.
При формировании алгоритма выделяют три основных этапа [26]:
I. Введение алгоритма. Этот этап подразумевает следующее:
1) Актуализация знаний, необходимых для введения и обоснования алгоритма.
2) Открытие алгоритма учащимися под руководством учителя.
3) Формулировка алгоритма.
II.Усвоение
Отработка отдельных операций, входящих в алгоритм и усвоение их последовательности.
III.Применение алгоритма.
Отработка алгоритма в знакомой и незнакомой ситуациях.
Выделенные этапы будут проиллюстрированы во второй главе работы.
Таким образом, применение алгоритмического метода при обучении математике устраняет главный недостаток учебников: процесс мыслительной деятельности расчленяется на определённое число достаточно простых элементарных операций, усвоения и понимания которых для учащихся будет менее трудоёмко.
Часть 2
1 Особенности изучения темы «Неравенства» в школьном курсе математики
Материал, связанный с неравенствами, составляет значительную часть школьного курса математики. Неравенства используются в различных разделах математики, при решении важных прикладных задач.
Неравенства сами по себе представляют интерес для изучения, так как именно с их помощью на символьном языке записываются важные задачи познания реальной действительности. Как в самой математике, так и в её приложениях с неравенствами приходится сталкиваться не менее часто, чем с уравнениями. Тема “Неравенства” связана со всеми темами курса алгебры. Например, неравенства используются при изучении свойств функции (нахождение промежутков знакопостоянства функции, определение монотонности и др.)
До прихода в школу дети приобретают опыт в обращении с понятиями «больше», «меньше», «не равны». Поэтому пропедевтическое изучение неравенств должно осуществляться совместно с изучением уравнений.
С соотношениями «больше», «меньше» между числами и знаками этих отношений дети знакомятся уже в 1 классе при изучении чисел первого десятка. В начальной школе дети должны научиться сравнивать уже простейшие числовые выражения, например, такие как: а+3 и а+1.
В начальной школе начинается и решение простейших неравенств, хотя термины «решение неравенства» и «решить неравенство» ещё не вводится. Приведём пример задания, предлагаемого в начальной школе.
Записать несколько значений букв, при которых верно неравенство х<9.
В 5 классе изучается сравнение натуральных, десятичных дробей.
Например, сравните многозначные натуральные числа 3421 и1803
Результат сравнения записывается в виде неравенства с помощью
Знаков « > » и « < » .
В 6 классе для установления отношений «больше», «меньше» на множестве рациональных чисел вводится понятие модуля числа. В связи с этим рассматриваются неравенства вида |х|≤а, |х-b|<b, |х-a|≤b. Их решения осуществляются с помощью числовой оси.
Тема “Неравенства” систематически изучается в 7-8 классах. В неё включены следующие разделы: «Числовые неравенства и их свойства», «Почленное сложение и умножение числовых неравенств», «Линейное неравенство с одной переменной», «Система линейных неравенств с одной переменной».
В 8 классе начинается изучение различных способов доказательства неравенств. С целью повышения доступности материала рассматриваются главным образом такие доказательства, которые ограничиваются методом сравнения с нулём разности левой и правой частей неравенств. В связи с решением линейных неравенств с одной переменной даётся понятие о числовых промежутках, появляются и вводятся соответствующие обозначения. При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание надо уделять отработке умения решать простейшие неравенства вида ах<b.
Формирование умений решать неравенства вида ах2+вх+с>0, где а≠0, осуществляется в 9 классе с опорой на сведения о графике квадратичной функции. Здесь учащиеся знакомятся с методом интервалов. Решают этим методом дробно – рациональные неравенства.
Следует особо остановиться на вопросе о равносильности неравенств, так как некоторые свойства числовых неравенств нельзя бездумно переносить на неравенства, содержащие переменную. Известно, что при добавлении к обеим частям числового неравенства любого числа, получаем новое неравенство, равносильное исходному. Но при добавлении к обеим частям неравенства какого – нибудь выражения может получиться неравенство неравносильное данному.
При переходе к функциональным неравенствам учащиеся сталкиваются с двумя важными аспектами математического образования.
Первый аспект состоит в геометрическом истолковании неравенств, которое делает все рассуждения предельно ясными. Однако нельзя забывать, что заключение делается не на основе чертежа, а путём анализа алгебраического выражения.
Второй аспект сводится к различным приёмам доказательства. Самый главный из них – рассмотрение разности между двумя частями неравенства. Но существуют и такие методы, как сведение доказываемого неравенства к равносильному, которое осуществляется заменой данных выражений обратным им, использование метода от противного и метода математической индукции.
Таким образом, неравенства являются наиболее компактным, легко обозреваемым и доступным для учащихся материалом, на котором отрабатываются сложнейшие математические методы. Отметим ряд особенностей изучения темы:
1)Как правило, навыки решения неравенств формируются на более низком уровне, чем навыки решения уравнений соответствующих классов, так как теория неравенств сложнее теорий уравнений (при выполнении одного и того же числа упражнений техника решения неравенств какого – либо класса будет ниже, чем уравнений соответствующего класса; следовательно, если имеется необходимость формирования прочных навыков решения неравенств, то для этого требуется большее число заданий).
2)Большинство приёмов решения неравенств состоит в переходе от данного неравенства к уравнению и последующем переходе от найденных корней уравнения к множеству решений исходного неравенства (темы, относящиеся к неравенствам, расположены после тем, относящихся к соответствующим классам уравнений).
3)В изучении неравенств большую роль играют наглядно – графические средства (изучение неравенств зависит от качества изучения функциональной линии школьного курса – построение графиков и графическое исследование функций).
Рассмотрим введение алгоритма решения неравенств первой и второй степени с одним неизвестным.
§2 Формирование алгоритма « Решение неравенств первой степени с одной неизвестной»
Цель:
· выработать умение решать неравенства первой степени с одним неизвестным и системы линейных неравенств.
Рассмотрению линейных неравенств и их систем предшествует детальное изучение числовых неравенств и их свойств.
В отличие от свойств числовых равенств, с которыми учащиеся знакомы ещё с начальной школы, свойства числовых неравенств они изучают практически впервые. Свойства формулируются в общем виде и достаточно строго доказываются. Это часто вызывает дополнительные трудности у учащихся, так как они здесь впервые в алгебре встречаются с теоремами.
Алгоритм решения неравенства с неизвестным сложнее, чем алгоритм решения уравнений, так как на последнем этапе решения приходится учитывать знак коэффициента при неизвестном. Кроме того, в отличие от уравнения неравенство имеет не отдельные решения, а, как правило, множество решений.
Решение систем неравенств с одним неизвестным тесно связано с числовыми промежутками, с которыми учащиеся знакомятся впервые. Изображению числовых промежутков на координатной прямой нужно уделить особое внимание. В частности, можно предложить следующий алгоритм, который позволит учащимся правильно отмечать промежутки, соответствующие неравенствам (простым или двойным) на координатной прямой.
Например, дано неравенство а ≤ x < b
Нужно отметить соответствующий промежуток на координатной прямой. Для этого воспользуемся алгоритмом.