Урок 3
Тема урока: Равные множества. Пустое множество.
Цель урока: формировать умение определять равные множества, познакомить с понятием пустого множества и знаком его обозначения.
Задачи урока:
- доводить знание табличных случаев умножения и деления до автоматизма;
- повторить решете задач.
Ход урока
1. Организационный момент
А сейчас проверь, дружок,
Ты готов начать урок?
Все ль на месте,
Все ль в порядке;
Ручка, книжка и тетрадка?
Все ли правильно сидят?
Каждый хочет получать
Только лишь оценку «пять».
Начинаем мы опять
Решать, отгадывать, смекать.
- Какую тему изучали на предыдущем уроке?
- Когда мы говорим, что множество задано?
- Кто не совсем четко понимает» о чем сейчас идет речь?
- У вас будет возможность на уроке разобраться с чем, что вы не поняли на предыдущем уроке. Для этого вам нужно быть очень внимательным.
2. Актуализация знаний
- На с. 9, выполнив задание № 12, мы сможем повторить материал, с которым познакомились на предыдущем уроке.
Соедините точки в порядке решения примеров.
- Кто у вас получился? (Собачка.)
- Среди множества собак нагоните элементы множества не по породам, а в соответствии с их назначением. (Гончие, сторожевые, бойцовые, комнатные и
т.д.)
- Перечеркните элементы множества комнатных собак, (Спаниель, лабрадор, пудель, бульдог, шнауцер).
- Какие способы задания множеств вы знаете? (Перечислением, заданием общих свойств.)
- Множество собак, элементы которого определены в соответствии со свойствами этих животных, задано общим свойством элементов. А перечисление мы использовали, когда перечислили породы комнатных собак.
- Множество легавых собак: {ретривер, веймаранер, спаниель, сеттер…}
Вывод: под множеством понимают совокупность определенных объектов, которые называют элементами множества. Множество можно задать, указав свойство, присущее всем элементам этого множества.
- Перечислите элементы множества треугольников. (Прямоугольные, остроугольные, тупоугольные треугольники.)
3. Знакомство с новым материалом
- А теперь перечислите элементы множества автомобилей, которые стоят перед доской.
Дети удивлены, перед доской ничего не стоит.
- Чему вы удивились? (Задано множество, элементы которого невозможно перечислить из-за их отсутствия.)
- Множество, не содержащее элементов, называется пустым, и его обозначают символомÆ.
- А какую цифру в математике можно считать родственницей данному символу? (Нуль.)
- Что вы можете сказать об этих двух множествах?
- Какой знак поставим между этими множествами? (Знак равенства.)
- Обратите внимание на доску. Что вы видите?
Рисунок 4
- Что вы можете сказать об этих двух множествах?
- Какой знак поставим между этими множествами? (Знак равенства).
- А что можете сказать о следующих двух множествах? (Они не одинаковы, у них есть элементы, которые не совпадают.)
Рисунок 5
- Какой знак в таком случае поставим? (Неравенства.)
- Что новое узнали о множествах? (Множества могут быть равными, неравными, пустыми.)
Работа по учебнику.
Задача № 1 — Сравни элементы множеств в первом и во втором рядах. Есть ли в первом ряду элемент, которого нет во втором ряду? Есть ли во втором ряду элемент, которого нет в первом ряду?
Задача №2 — Сравни множества в первом и во втором рядах. В каком ряду есть лишний элемент?
Задача №3 - Верно ли записано равенство? Почему? [21, 8]. Варианты могут отличаться, т. к. можно переставлять местами элементы, чтобы составить равные множества, и ввести или убрать любой элемент из; данного множества, чтобы получить не равные множества.
№ 6, 7, 8 - выполняется устно.
Задача №6 — Составь все множества, равные множеству {О; ∆}.
Задача №7 - Сколько элементов содержит: а)множество дней недели; б) множество парт в первом ряду; в) множество букв русского алфавита; г) множество хвостов у кошки Мурки?
Задача №8 - Растут ли в вашем школьном саду тропические пальмы? Каково множество пальм в школьном саду?[21, 8].
№ 9 - самостоятельная работа с проверкой по эталону.
Найди правильное обозначение пустого множества, а остальные зачеркни.
Обратить внимание: множество {Æ} не является пустым, т. к. содержит один элемент - символ пустого множества.
Физкультминутка
Повторение изученного. Устный счет
Задача № 10:
Во сколько раз 12 меньше 96? (В 8раз.)
Сумму чисел 35 и 60 уменьшить в 19 раз. (5.)
От суммы чисел 48 и 36 отнять разность чисел 100 и 76. (60.)
Частное от деления 72 и 4 увеличить в 5 раз. (90.)
К произведению 12 и 5 прибавить 28. (Восемьдесят восемь.)
Задача №11- «Блиц-турнир» с самопроверкой по эталону.
а) Шапка стоит А рублей, а пальто - в 9 раз дороже. Сколько стоят пальто и шапка вместе?
б) Масса арбуза В кг, а масса тыквы — на 2 кг меньше. Какова общая масса арбуза и тыквы?
в) В ведро входит С воды, а в кастрюлю — в7 раз меньше
а) а + а • 9; б) b + (b-2);
в) с- с: 7; г) d-n • 8.
Индивидуальные задания (у доски)
1. Вырази в указанных единицах измерения:
4 дм 5 см =…см 450см = …м…дм
37дм = …м…дм 68см = …дм…см
800см = …дм
2. Реши уравнение:
420: х = 6 х • 40 = 160
6. Самостоятельная работа
1. Арифметический диктант
- Найти произведение чисел 9 и 7.
- Найти разность чисел 87 и 9.
- Найти частное чисел 81 и 9.
- Увеличить 72 на 8.
- Уменьшить 63 в 7 раз.
- Увеличить 12 в 3 раза.
- Уменьшить 56 на 8.
- На сколько 36 больше 6?
- Во сколько раз 48 больше 8?
2. Решите задачу.
Ученики школы интересно провели лето. Из них 30 человек ездили на Черное море, в санаторий - в 4 раза больше, чем на море. В лагере отдыхало - в 2 раза меньше, чем в санатории. А в турпоход сходило столько учащихся, сколько отдыхало в санатории и лагере вместе. Сколько учеников в школе?
3. а) Задайте общим свойством множество С:
С= {Хлеб; масло; соль; крупа; перец; сыр; колбаса},
б) Запишите множество К чисел, кратных 3.
К={ }.
4. Решите примеры.
70 • 5= 63: 21= 630:7 =
90: 6= 88: 4= 560: 80 =
7. Подведение итогов урока
- Приведите примеры элементов пустого множества. (Лошади, пасущиеся на Луне; яблоки и груши, растущие на березе и т. п.)
Домашнее задание
Задание № 4. Пусть А = {0; 1; 2}. Какие из множеств В = (2; 0; 1}, С = {1; 0}, D = {3; 2; 110} равны множеству А, а какие ему не равны? Сделай записи и объясни их.
Методические рекомендации к уроку 3
Основной целью третьего урока является формирование способности к, усвоению равенства множеств, знакомство с понятием пустого множества и его обозначением.
Понятие равенства множеств ничем не отличается от понятия равенства «мешков», с которым учащиеся встречались в первом классе. Равными называются множества, состоящие из одних и тех же элементов. Очевидно, равные множества могут отличаться лишь порядком их элементов, например: {а; b; с)= {с; а; b}
Смысл этого понятия раскрывается в № 1-7. Важно, чтобы, выполняя их, учащиеся обосновывали свои утверждения, а не просто называли ответ. Например, в упражнении № З первое равенство верно, так как оба множества состоят из одних и тех же элементов, но записанных в разном порядке. Поэтому рядом с равенством надо подчеркнуть слово «да» и зачеркнуть «нет». Второе равенство неверно, поскольку в множестве, записанном слева, лишний элемент «треугольник». Третье равенство верно, так как черный квадрат из первого множества поменялся на черный круг, и, значит, множества не равны [21, 8].
Упражнение № 4. Дети делают записи в тетради и устно дают пояснения:
А = В Множества А и В равны, так как они состоят из одних и тех же элементов: 0, 1 и 2.
А≠С Множества А и С не равны, так как в множестве А есть элемент 2, а в множестве С его нет.
А≠ D Множества А и D не равны, так как в множестве А нет элемента 3, а в множестве D он есть [21, 8].
Упражнение № 5. Каждый ребенок записывает в тетради свой вариант. Можно проговорить с ними, что различных вариантов составления множества А может быть всего 6, а различных вариантов составления множества В - бесконечно много [21, 8].
В упражнении № 6 следует обратить внимание на упорядоченный перебор вариантов:
{а, б, в} {б, а, в} {в, а, б)
{в, в,,6} {б, в, а} {в, б, а}
На первом месте последовательно записываются сначала а, потом б, потом в, и в каждом случае два остальных элемента переставляются [21, 8].
В № 7 ставится вопрос о числе элементов множества. Выясняется, что есть множества, содержащие всего лишь 1 элемент (множество хвостов у Мурки, множество носов у Пети) и даже не содержащие ни одного элемента (множество лошадей, пасущихся на Луне). В последнем случае множество называют пустым и обозначают символом:Æ [21, 8].
В № 8-9 отрабатывается понятие пустого множества. Дети должны обратить внимание на правильный наклон черты в его записи и на то, что это множество записывается без скобок (множество {Æ} не является пустым, оно содержит 1 элемент) [21, 8].
Таким образом, правильное обозначение пустого множества в № 8 лишь второе:Æ. Дома можно предложить учащимся придумать примеры равных и неравных множеств, пример пустого множества.
Заключение
Настоящее исследование посвящено методике преподавания элементов теории множеств в начальном курсе математики «Школа 2000...». В соответствии с поставленными задачами были сделаны следующие выводы:
1. Спецификой программы по математике «Школа 2000...» является то, что среди общих целей математического образования по программе «Школа 2000...» центральное место занимает развитие абстрактного мышления. Необходимой компонентой абстрактного мышления является логическое мышление – как дедуктивное, в том числе и аксиоматическое, так и продуктивное - эвристическое и алгоритмическое мышление.