Смекни!
smekni.com

Роль самостоятельной работы учащихся при формировании у них навыков табличного умножения и соответствующих 2 (стр. 7 из 13)

Тот опыт, что получен с помощью учителя, дети переносят на самостоятельное решение сначала подобных, а затем и менее знакомых задач. Непосредственные возможности выполнения под руководством учителя новых, более сложных познавательных действий (которые сам ребёнок ещё не осиливает) и составляют зону его ближайшего развития.

Сложность самостоятельной учебной работы зависит в первую очередь от наличия в задании новых для ученика элементов ─ неизвестных ранее или мало освоенных.

Сравнительные данные тестирования учащихся об отношении к самостоятельной работе

Утверждения Число детей, ответивших
да нет
Экспер. Контр. Экспер. Контр.
1. Мне нравится самостоятельная работа тем, что всё запоминается лучше.2. Я хочу, чтобы было много самос-тоятельных работ.3. Я хочу, чтобы больше было уроков по математике─ по русскому языку4. Мне нравится математика, потому что она лёгкая.5. Мне нравится математика, потому что я всё понимаю и справляюсь с решением задач и примеров. 335544 161514111414 171715151616 456966

Нужно ли комментировать данные, показанные на таблице? В большинстве случаев цифры, можно сказать, поменялись местами. Мы соотнесли отрицательные ответы, и они были даны, в основном, слабыми учениками.

Обобщённо можно сказать, что самостоятельные работы детям стали нравиться, и они хотят, чтобы самостоятельных работ стало больше. Уроки, на которых часто были самостоятельные работы, тоже стали учащимся нравиться, и они хотят, чтобы уроки русского языка и математики были чаще.

В ходе экспериментального обучения, при составлении задания предусматривалось, чтобы, по возможности, все входящие в него познавательные приёмы, способы познавательной деятельности отрабатывались на следующим за освоенным уже учеником. Последовательный подъём по таким ступенькам отработки техники познавательной деятельности связан с повышением трудности процесса выполнения задания. Этой трудностью является ознакомление ученика с очередным познавательным действием, входящим в него познавательными умениями, приёмами, уяснением хода и смысла их выполнения.

Определяющим для нас являлось: во-первых, обязательные знания об уровне знаний ученика, осведомлённость об уровне его актуального развития. Это позволило определить, какие познавательные операции и на каком уровне должны отрабатываться учащимися.

Во-вторых, важно представлять возможности ближайшего развития ребёнка.

Названные два положения являются исходными при осуществлении деятельности учителя в обучении учащихся самостоятельной работе.

Для того, чтобы повысить уровень развития умений самостоятельной работы учащихся, мы разделили их на три группы: сильные, средние и слабые. На каждом уроке предлагали задания на цветных карточках по степени трудности и оценивали их самостоятельные работы.

I группа учащихся (сильные) быстро справлялась с заданием, без помощи учителя выполняла самостоятельную работу.

II группа учащихся (средние) иногда испытывала трудности при выполнении самостоятельной работы по карточке, некоторые ребята требовали разъяснения задания. После этого успешно справлялись с заданием.

III группа (слабые) не смогла сразу самостоятельно выполнить задание, но по мере работы с ними (объяснения материала повторно, с помощью наводящих вопросов) ребята выполняли уже подобное задание самостоятельно. У этих ребят появилось желание находить истину самостоятельно, и они с удовольствием работали по карточкам.

Работа эта трудоёмкая, приходится ежедневно много работать: делать карточки, перфокарты, оценивать сразу за урок по 15-20 человек. Но отрадно видеть результаты проведённого эксперимента.

В процессе экспериментального обучения ученикам на каждом уроке математики предлагалось выбрать задание для самостоятельной работы по цвету карточки следующим образом: красный цвет означает трудное задание, жёлтый ─ задание средней сложности, зелёный цвет означал простоту решения данной задачи. Причём, оценка за решение любой из трёх задач будет одинаковой.

В начале экспериментального обучения красные карточки брали три ученика, жёлтые ─ 14, зелёные ─ 3. В результате применения самостоятельных работ систематически на конец эксперимента красные карточки брали 12 человек, жёлтые ─ 7, зелёные ─ 1.

Такие данные мы расценили как положительное влияние самостоятельных работ.

2.3 Комплекс фрагментов уроков математики по теме "Табличное умножение и соответствующие случаи деления"

Несомненно, что для успешного изучения математики ученикам начальной школы необходимо, прежде всего, овладеть элементарными вычислительными навыками (табличное сложение и вычитание в пределах двадцати, табличное умножение и соответствующие ему случаи деления в пределах ста). Эти навыки должны быть доведены до автоматизма, который подразумевает быстрое и безошибочное выполнение операций. Таким образом, скорость вычислений является первым критерием автоматизма. Между тем, ошибка не всегда является следствием неустойчивости навыков. Причиной могут оказаться и посторонние факторы (плохое самочувствие ученика, кратковременное отвлечение внимания и т.п.). Поэтому в качестве второго критерия автоматизма следует рассматривать вероятность появления ошибки при вычислениях, которая должна быть достаточно мала, но все же не равна нулю.

В четвертой четверти учебного года в третьем классе (24 ученика), в котором мне предстояло преподавать математику, я провела серию проверочных работ по основным темам курса математики начальной школы, а также трехэтапное письменное тестирование элементарных вычислительных навыков (табличное сложение и вычитание в пределах 20, табличное умножение). В качестве тестовых заданий были использованы таблицы, образцы которых приведены ниже.

1) Заполнить таблицу, выполнив сложение:

+ 7 2 9 5 3 4 8 6
3
8
5
4
9
6
2
7

2) Заполнить таблицу, выполнив вычитание:

- 17 11 10 13 16 12 15 14
8
3
9
2
5
7
6
4

3) Заполнить таблицу, выполнив умножение:

х 2 4 9 8 6 5 3 7
7
9
5
2
3
6
8
4

При тестировании фиксировалось время заполнения таблицы каждым учеником. Обобщенные результаты представлены на диаграмме рассеивания по среднему времени выполнения одной элементарной операции (в секундах – ось абсцисс) и относительной частоте появления ошибок (ось ординат). На рисунке проведены также медианы распределений по времени (

8,3 с) и частоте (
0,18).


Проверочные работы не выявили в этом классе неуспевающих по математике. Все учащиеся, показавшие при тестировании элементарных вычислительных навыков результаты, превысившие обе медианы, а также ученица, не допустившая ошибок, но работавшая медленно (15,9 с) по итогам проверочных получили достаточно твердые удовлетворительные оценки. Поэтому я предположила, что уровень развития навыков табличного счета у этих учеников можно считать приемлемым, и дополнительные занятия в четвертом и пятом классах проводил только по новому материалу.

В четвертом классе неудовлетворительную годовую оценку получил один ученик, показавший при этом не самые плохие результаты при тестировании (9,6 с; 0,06). В пятом классе в аналогичной ситуации оказался другой ученик (15,9 с; 0,039). После июньских занятий оба успешно сдали переэкзаменовку и были переведены в следующий класс.

Ситуация резко ухудшилась в шестом классе при изучении курса алгебры. Несмотря на изнурительные для обеих сторон дополнительные занятия, у девяти учащихся средняя оценка по алгебре во втором полугодии оказалась меньше 2,4. На диаграмме рассеивания по параметрам развития навыков табличного счета в третьем классе эти ученики выделены пустыми точками.


Очевидно, что чем хуже были развиты элементарные вычислительные навыки в начальной школе, тем менее успешно ученики изучали алгебру три года спустя. Таким образом, выявилась прямая зависимость между уровнем развития навыков табличного счета в начальной школе и усвоением курса алгебры в шестом классе.

Статистический анализ позволил выделить среди успевающих и неуспевающих учащихся группы, распределение вариант в которых по каждому из рассматриваемых параметров удовлетворяло критериям нормальности (гипотеза о нормальности распределения принималась на уровне значимости 0,05). Первая группа (успевающие ученики) показана на диаграмме зелеными точками, а вторая (неуспевающие ученики) серыми.

Критерии отбрасывания крайних вариант подтвердили, что отмеченные черными точками ученики не могут быть включены в первую (зеленую) группу по ошибкам, а отмеченный пустой точкой ученик не может быть включен во вторую (серую) группу по времени. Исключение составляет лишь ученица, отмеченная синей точкой, которую можно включить как в первую, так и во вторую группу.

Нормальность распределения вариант в каждой из выделенных групп показывает, что в них вошли учащиеся, имеющие примерно одинаковый уровень развития элементарных вычислительных навыков. Внутреннюю однородность каждой из этих групп косвенно подтверждает также отрицательный коэффициент корреляции ( r = -0.59 для первой группы и r = -0.45 для второй), что говорит о наличии в каждой из них обратной связи между средним временем выполнения одной операции и относительной частотой появления ошибок - учащиеся ошибаются тем меньше, чем больше времени тратят на обдумывание действия. К сожалению, малочисленность групп не позволила получить статистическую значимость отличия коэффициента корреляции от нуля.