Учащимся нужно также показать, что дроби применяются не только в математике, но и, например, в музыке.
Все знают, что Пифагор был учёным и, в частности, автором знаменитой теоремы. А то, что он был еще и блестящим музыкантом, известно не так широко. Сочетание этих дарований позволило ему первым догадаться о существовании природного звукоряда. Надо было ещё доказать это. Пифагор построил для своих экспериментов полуинструмент-полуприбор — «монохорд». Это был продолговатый ящик с натянутой поверх него струной. Под струной, на верхней крышке ящика, Пифагор расчертил шкалу, чтобы удобнее было зрительно делить струну на части. Множество опытов проделал Пифагор с монохордом и, в конце концов, описал математически поведение звучащей струны. Работы Пифагора легли в основу науки, которую мы называем сейчас музыкальной акустикой.
Оказывается, для музыки семь звуков внутри октавы такая же естественная вещь, как десять пальцев на руках в арифметике. Уже тетива самого первого лука, колеблясь после выстрела, давала готовым тот набор музыкальных звуков, которыми мы почти без изменения пользуемся до сих пор.
С точки зрения физики тетива и струна — одно и то же. Да и сделал человек струну, обратив внимание на свойства тетивы. Звучащая струна колеблется не только целиком, но одновременно и половинками, третями, четвертями и т.д. Подойдём теперь к этому явлению с арифметической стороны. Половинки колеблются вдвое чаще, чем целая струна, трети — втрое, четверти — вчетверо. Словом, во сколько раз меньше колеблющаяся часть струны, во столько же раз больше частота её колебаний. Допустим, вся струна колеблется с частотой 24 герца. Высчитывая колебания долей вплоть до шестнадцатых, мы получим ряд чисел, показанных в таблице. Эта последовательность частот так и называется — натуральный, т.е. природный, звукоряд.
Согласно программе и учебнику по математике формирование понятий дроби начинается с умения получать доли при делении какой-либо величины на несколько равных частей.
Учащимся предлагается разделить на равные части знакомые предметы, такие, как арбуз, дыня, пирог и др., и выделить одну из частей, одну из долей. Такие же по характеру упражнения выполняют учащиеся с использованием геометрического материала: деление отрезка, круга, квадрата на равные части, на равные доли и взятие одной такой части, одной доли. От выделения одной части и взятию нескольких таких частей.
Учащимся сообщается, что для выражения одной или нескольких долей предмета нужны новые числа, а именно дроби. Далее приводятся примеры обыкновенных дробей и даётся форма записи обыкновенной дроби, проводится обучение чтению. Учащиеся должны помнить: числитель дроби — количественное числительное женского рода (одна, две и т.д.), а знаменатель — порядковое числительное (седьмая, сотая, двести тридцатая и т.д.).
Например,
— одна пятая;
— две шестых;
— семь десятых;
— восемьдесят три сто пятьдесят вторых. В процессе работы над закреплением понятия дроби необходимо познакомить учащихся с происхождением слова «дробь», ввести термины «числитель», «знаменатель». Это можно сделать следующим образом.
В начале урока учащимся можно предложить три ребуса:
После их разгадывания можно сообщить им следующие исторические сведения.
С древних времён людям приходилось не только считать предметы, но и измерять длину, время, площадь, вести расчеты за купленные или проданные товары.
Не всегда результат измерения или стоимость товара удавалось выразить натуральным числом. Приходилось учитывать и части, доли меры. Так появились дроби.
В русском языке слово дробь появилось в VIIIвеке, оно происходит от глагола «дробить» — разбивать, ломать на части. В первых учебниках математики (в VIIвеке) дроби так и назывались — «ломаные числа». У других народов название дроби также связано с глаголами «ломать», «разбивать», «раздроблять».
Современное обозначение дробей берет свое начало в Дровней Индии; его стали использовать и арабы, а от них в XII-XIVвеках оно было заимствовано европейцами. Вначале в записи дробей не использовалась дробная черта; например, числа
, записывались так: , . Черта дроби стала постоянно использоваться лишь около трехсот лет назад. Первым европейским ученым, который стал использовать и распространять современную запись дробей, был итальянский купец и путешественник, сын городского писаря Фибоначчи (Леонардо Пизанский). В 1202 г. он ввел слово «дробь». Названия «числитель» и «знаменатель» ввел в XIIIвеке Максим Плануд — греческий монах, ученый-математик.Десятичные дроби вводятся в связи с рассмотрением позиционной системы. Десятичная дробь появляется как частный случай обыкновенной дроби, как способ записи дробей со знаменателем 10ⁿ (1/10, 3/1000 и др.), второе условие относится к форме записи (0,1; 0,003 и др.).
Мотивацию их введения можно связать с тем, что в науке и промышленности, в сельском хозяйстве при расчетах десятичные дроби используются гораздо чаще, чем обыкновенные.
Это связано с простотой правил вычислений с десятичными дробями, похожестью их на правила действий с натуральными числами. Правила вычислений с десятичными дробями описал знаменитый ученый средневековья Аль-Каши Джемшид ибн Масуд, работавший в городе Самарканде в обсерватории Улугбека в начале XVвека.
Записывал Аль-Каши десятичные дроби так же, как принято сейчас, но он не пользовался запятой: дробную часть он записывал красными чернилами или отделял вертикальной чертой.
Но об этом в Европе в то время не узнали, и только через 150 лет десятичные дроби были заново изобретены фламандским инженером и ученым Симоном Стевином. Стевин записывал десятичные дроби довольно сложно.
Например, число 24,56 выглядело так 24-5-6- или
— вместо запятой нуль в кружке (или 0 над целой частью), цифрами 1, 2, 3,…, помечалось положение остальных знаков.Запятая или точка для отделения целой части стали использоваться с XVIIвека.
В России учение о десятичных дробях изложил Леонтий Филиппович Магницкий в 1703 году в первом учебнике математики «Арифметика, сиречь наука числительная».
При изучении действий с дробями огромный гуманитарный потенциал кроется в содержании упражнений, которые можно использовать на уроках:
- связанные с литературой:
Задача 1. Три неразлучных друга Винни-Пух, Кролик и Пятачок решили узнать свой вес. Но шкала весов до 20 килограммов была повреждена и показания по ней прочитать не представлялось возможным. Поэтому Винни-Пух взвесился сначала с Кроликом: получилось 22,4 кг; затем с Пятачком, получилось 23,5 кг; а затем они взвесились все вместе получилось 26,7 кг. Какова масса каждого из них в отдельности?
Древнеиндийская задача.
Есть кадамба-цветок.
На один лепесток
Пчелок пятая часть опустилась.
Рядом тут же росла
Вся в цвету сименгда,
И на ней третья часть поместилась.
Разность их ты найди,
Её трижды сложи,
На кутай этих пчел посади.
Лишь одна не нашла