Второй уровень (уровень установления связей) включает установление связей и интеграцию материала из разных математических тем, необходимых для решения поставленной задачи. Учащиеся могут применять свои знания в разнообразных, достаточно сложных ситуациях. Они могут упорядочивать, соотносить и производить вычисления, решать многошаговые текстовые задачи. Учащиеся могут выполнять несложные алгебраические задания, включающие составление выражений, решение систем линейных уравнений, определять значения величин, используя известные формулы. Они могут интерпретировать информацию, представленную в таблицах и на графиках.
Примерами заданий второго уровня могут служить:
Задача 8 «Скейтборд»
Сергей большой любитель кататься на скейтборде. Он нередко заходит в магазин «Спорт», чтобы выяснить цены на некоторые товары.
В этом магазине можно купить полностью собранный скейтборд. Но можно купить платформу, один комплект из 4 колес, один комплект из двух держателей колес, а так же комплект металлических и резиновых составных частей и собрать свой собственный скейтборд. Цены в магазине на эти товары представлены в таблице 3.
Таблица 3
Цены на части к скейтборду
Товар | Цена | |
Собранный скейтборд | 82 или 84 | |
Платформа | 40, 60 или 65 | |
Один комплект из 4 колес | 14 или 36 | |
Один комплект из 2 держателей колес | 16 | |
Один комплект металлических и резиновых деталей скейтборда | 10 или 20 |
Вопрос 1
Сергей хочет сам собрать для себя скейтборд. Какую наименьшую цену и какую наибольшую цену можно заплатить в этом магазине за все составные части скейтборда?
Вопрос 2
В магазине предлагают на выбор три различных вида досок, два различных комплекта колес, два различных комплекта металлических и резиновых деталей. При этом имеется только один выбор комплекта держателей колес.
Сколько различных скейтбордов может собрать Сергей из предлагаемых составных частей?
А. 6
Б. 8
В. 10
Г. 12
Вопрос 3 для задачи «Увеличение роста»:
Пользуясь графиком, определите, в каком возрасте девушки в среднем выше юношей того же возраста
Третий уровень (уровень рассуждения) - математические размышления, требующие обобщения и интуиции. Учащиеся могут организовывать информацию, делать обобщения, решать нестандартные проблемы, делать выводы на основе исходных данных и обосновывать их. Они могут вычислить изменения имеющихся данных, связанные с процентами, применить знания алгебраических понятий и зависимостей, составить алгебраическую модель несложной ситуации. Они могут интерпретировать, интерполировать и экстраполировать данные в различных таблицах и на графиках
В заданиях третьего уровня, прежде всего, необходимо самостоятельно выделить в ситуации проблему, которая решается средствами математики, и разработать соответствующую ей математическую модель. Решить поставленную задачу используя математические рассуждения и обобщения, и интерпретировать решение с учетом особенностей рассмотренной в задании ситуации.
Примерами заданий, формирующих третий уровень математической грамотности, могут служить:
Вопрос 3 для задачи «Скейтборд»
У Сергея 120 зедов, и он хочет собрать самый дорогой скейтборд, который может позволить себе на эти деньги. Сколько денег он может истратить на каждую из 4 частей скейтборда?
Запишите ответ в приведенную ниже таблицу 4.
Таблица 4
Части скейтборда | Сумма денег |
Платформа | |
Колеса | |
Держатели колес | |
Металлические и резиновые детали |
Вопрос 3 для задачи «Обменный курс»:
За прошедшие 3 месяца обменный курс изменился, вместо 4,2 стал 4,0 ZAR за 1 SGD.
Был ли обменный курс в 4,0 ZAR вместо 4,2 ZAR в пользу Мей-Линг, когда она снова обменяла южно-африканские рэнды на сингапурские доллары?
Задача 9 «Садовник»
Таблица 5
Форма клумбы | Хватит ли 32 м провода, чтобы обозначить границу клумбы |
Форма А | Да\Нет |
Форма В | Да\Нет |
Форма С | Да\Нет |
Форма Е | Да\Нет |
Выводы по третьему параграфу
При решении компетентностно-ориентированных задач основное внимание должно уделяться формированию способностей учащихся использовать математические знания в разнообразных ситуациях, требующих для своего решения различных подходов, размышлений и интуиции.
Содержание заданий желательно связывать с традиционными разделами или темами, составляющими основу программ обучения в большинстве стран мира, в том числе и в России: числа, алгебра, функции, геометрия, вероятность, статистика, дискретная математика.
Компетентностно-ориентированные задачи должны содержать вопросы различных типов – с выбором ответа, с кратким ответом (в виде числа, выражения, формулы, слова и пр.), с развернутым свободным ответом.
Мы выделим компетентностно-ориентированные задачи трех уровней, которым присвоены названия: уровень воспроизведения, уровень установления связей, уровень рассуждения. Выделение уровней основывается на уровне математической подготовки учащихся.
4. Методические рекомендации использования компетентностно-ориентированных математических задач
4.1 Содержание учебника математики как среда для составления компетентностно-ориентированных задач
Содержание образования доводится до учителя и учащегося в виде предметного учебно-методического комплекса (УМК), ведущую роль в котором играет учебник. В современных учебниках немного компетентностно-ориентированных заданий (в основном это задачи первого уровня), но на базе имеющихся заданий можно разработать свои задания, формирующие ключевые компетентности. Это означает, что содержание соответствующих параграфов нужно рассматривать как среду, а не как материал, который во что бы то ни стало необходимо усвоить учащимся [10].
Рассмотрим несколько примеров использования задач из учебника, с помощью которых можно составить задание для формирования ключевых компетентностей учащихся.
Задача 10
В учебнике математики для 5 класса [2] предложена следующая задача:
Три рассказа занимают 34 страницы. Первый занимает 6 станиц, а второй – в 3 раза меньше, чем третий. Сколько страниц занимает второй рассказ?
Эта задача не является компетентностно-ориентированной задачей. Добавив к условию задачи вопрос (постройте круговую диаграмму, изображающую распределение страниц по книгам (в процентах)), задание становится задачей первого уровня, так как учащимся необходимо выполнить несложное вычисление и представить результат в виде диаграммы.
Задача 11
Ю.Ф.Фоминых [19] предлагает следующую задачу: «в романе Жюля Верна «Дети капитана Гранта» читаем: «Погода стояла прекрасная, не слишком жаркая…Роберт узнал, что средняя годовая температура в провинции Виктория +74о по Фаренгейту». Сколько это будет в привычных для нас градусах Цельсия? Составьте формулу для вычисления температуры в градусах Цельсия, если известна температура по Фаренгейту и наоборот. В таблице 6 приведена температура таяния льда и кипения воды в градусах Цельсия и по Фаренгейту»
Таблица 6
Температура таяния льда и кипения
Температура | В градусах Цельсия | По Фаренгейту |
Таяния льда | 0 | 32 |
Кипения воды | 100 | 212 |
Эта задача является заданием первого уровня, так как учащимся необходимо с помощью таблицы составить формулу и используя эту формулу ответить на вопрос задачи. Для того чтобы задача стала заданием второго уровня, добавим в условие задачи несколько вопросов.
Например: Температура воздуха изменялась в течение дня от
до Цельсия. На рисунке 5 изображен график изменения температуры. Изобразите график функции, на котором будет изображена температура воздуха в градусах по Фаренгейту, соответствующая температуре на графике.Эта задача будет заданием второго уровня, так как в ходе решения задачи учащимся необходимо определить значения величин по графику и результатом решения задачи так же будет график.
Задача 12
Ю.Ф.Фоминых [19] предлагает следующую задачу: «редактор стенгазеты 8-го класса «Веселая перемена» поместил заметку: «На школьных соревнованиях быстрее всех пробежал стометровку ученик нашего класса Коля. Другие призеры пришли к финишу в таком порядке: Миша, Паша, Федя. И удивительно – с одной и той же разницей в скорости: Коля затратил на эту дистанцию 12 с, Миша – 13 с, Паша – 14 с, Федя – 15 с».