Закрепление полученных знаний
Учитель рассматривает на конкретных примерах, как строятся графики функций, для которых применимы изложенные приемы.
Пример 1. Построить график функции
Сначала приведем исходное выражение функции к более удобному виду:
1) график функции
2) график функции
Последний график является искомым (рис. 12).
Пример 2. Построить график функции
Снова начнем с преобразований:
Построение производится в три этапа:
1) строим график функции
2) переносим ось Oy влево на 1 единицу;
Построить графики функций.1)
Письменная работа
Учащиеся выполняют письменную работу по теме «Преобразования графиков: сжатие (растяжение) графика к (от) оси абсцисс и оси ординат».
Построить графики функций. 1)
Подведение итогов занятия
- Какое преобразование Вы использовали для построения графиков функций?
- Сформулируйте суть изученного преобразования.
Методические рекомендации к 5 и 6 занятиям. Необходимо научить передавать графически качественные особенности функций. Использовать задания различных уровней сложности, давать учащимся возможность самим конструировать задания с целью формирования интереса к изучению данного курса. Все результаты деятельности учащихся (ответы на вопросы по домашнему заданию, решение заданий на доске, активное участие в ходе всего занятия) фиксировать в индивидуальной карточке.
Тема 3. Действия над функциями
Занятие №7. Сумма (разность) функций
Цель: изучить арифметические действия (сложение, вычитание) производимые с функциями, научить учащихся строить графики функций, являющиеся суммой (разностью) других функций.
Ход занятия:
Изучение нового материала
Над функциями, как и над числами, можно производить арифметические действия, т.е. определять сумму (разность), произведение и частное функций. Графики функций
Суммой двух функций
Ординаты графика суммы функций получаются путем сложения ординат графиков складываемых функций для каждого значения аргумента (для каждой абсциссы) из области определения суммы.
Аналогично определяется разность двух функций и строится ее график. При построении графика разности можно поступить иначе: построить графики функций
Закрепление полученных знаний
Учитель рассматривает на конкретном примере, как производится сложение функций, и строит график полученной функции.
1) Строим графики функций
Получаем искомый график (рис. 15).