Смекни!
smekni.com

Развитие функциональной линии в курсе алгебры 7-9 классов на примере учебников по алгебре под ред (стр. 3 из 16)

Логическая трактовка понятия функции исходит из положения о том, что строить обучение функциональным представлениям следует на основе методического анализа понятия алгебраической системы. Функция при таком подходе выступает в виде отношения специального вида между двумя множествами, удовлетворяющего условию функциональности. Начальным этапом изучения понятия функции становится вывод его из понятия отношения. Подход основан на трактовке понятия функции более позднего времени: вторая половина XIX в. – XX в.

Логический подход охватывает множества разной природы. Такое определение по структуре простое, позволяет чётко дать некоторые определения, относящиеся к функциональной линии, которые при генетическом подходе сделать нелегко (обратная функция и так далее).

Таким образом, если генетический подход оказывается недостаточным для формирования функции как обобщенного понятия, то логический обнаруживает определённую избыточность. Отметим, что различия в трактовках функции проявляется с наибольшей резкостью при введении этого понятия. В дальнейшем изучении функциональной линии различия постепенно стираются, поскольку изучается в курсах алгебры и начал анализа не само понятие функции, а в основном конкретно заданные функции и классы функций, их разнообразные приложения в задачах.

В настоящее время в школьном курсе математики используется генетический подход.

1.4. Функциональная пропедевтика.

Основные задачи пропедевтики решают функциональные упражнения. Часть таких упражнений рассматривается в начальных классах, основное внимание им должно быть уделено в 5–6 классах.

Виды упражнений:

1) Упражнения с переменными, например, вычисление значений буквенных выражений при различных значениях переменных. Такие задания постепенно приводят к понятию функции и готовят учащихся к усвоению аналитического способа задания функции. При решении таких упражнений вычисления лучше записывать в форме таблицы, что готовит учеников к усвоению табличного способа задания функции.

2) Упражнения на составление формул при решении задач и наоборот задач по готовым формулам.

3) Упражнения на изменение результатов действий в зависимости от изменения компонентов, например, как изменяется сумма, если слагаемое изменяется на столько-то.

4) Упражнения на координатной прямой, координатной плоскости и в чтении графиков.

В 5 классе учащиеся должны уметь решать 2 задачи: изображать точку по координате и находить координату точки на луче, а в 6 классе эти задачи переносятся на координатную плоскость.

1.5. Введение понятия функции, способов её задания и исследования.

Введение понятия функции.

Для введения понятия функции используется конкретно-индуктивный путь, поэтому полезно использовать метод проблемного изложения, разобрать несколько задач с подчёркиванием существенных признаков понятия (одна переменная зависит от другой, однозначная зависимость). Примеры должны быть разнообразными по содержанию, несущественные признаки должны варьироваться (несущественным является способ задания функции: формула, график, таблица). Необходимо подобрать контрпример для разных способов задания функции, выделить критерий, по которому можно определить, является ли зависимость функциональной (при каждом способе задания).

Критерии:

- Если зависимость задана таблицей, то в первой строчке не должно быть одинаковых чисел.

- В случае, когда функция задана графически, то любая прямая, параллельная оси Оу, должна пересекать график не более чем в одной точке.

- Если функция задана аналитически, то нужно следить за единственностью значений соответствующих зависимостей, например,

.

При введении понятия «функция» следует обратить внимание на переход от одной формы задания функции к другой. В школе, как правило, он осуществляется по схеме: аналитическая модель ® таблица ® график. Для введения конкретных функций лучше использовать схему: словесная модель ® таблица ® график ® аналитическая модель.

Очень важно, чтобы учащиеся понимали, что одна и та же функция может быть задана и формулой, и таблицей, и графиком, но не всякая (некоторые функции, заданные графически, не могут быть заданы формулой, например, кардиограммы).

При введении записи

необходимо, чтобы учащиеся понимали смысл буквы f, которая означает закон соответствия.

Способы исследования функций:

Содержание этой учебной задачи заключается в том, чтобы средствами, которыми владеют учащиеся в это время, устанавливать все свойства функции.

Выделяют три способа исследования функции: аналитический (исследование элементарными средствами и исследование с помощью производной), графический и комбинированный метод.

Результатом аналитического метода является построение графика функции. При исследовании используются уравнения и неравенства.

При графическом методе по точкам строится график, и с него считываются свойства.

Комбинированный метод используется в двух смыслах:

1) часть свойств обосновывается аналитически, а часть – графически;

2) сначала строится график по точкам, считываются свойства, а затем они доказывается без всякой опоры на график.

Необходимо уже в основной школе чётко разграничивать языки, на которых рассматриваются свойства функций: словесный, графический, аналитический.

Схема для чтения свойств функции

:

Свойства функции

Аналитически это означает

Графически это означает

1. Область определения Переменная х в формуле
может принимать значения …
Это множество абсцисс…
2. Область значений Переменная у в формуле
может принимать значения …
Это множество ординат точек графика …
3. Нули функции
при х =…(корни уравнения)
Это абсциссы точек пересечения графика с осью Ох
4. Функция принимает значения: а) больше а б) меньше а а)
, если х ... б)
, если х ...
а) График расположен выше прямой у = а при х =... б) График расположен ниже прямой у = а при х =...
5. Функция принимает значения, равные значениям функции
, если х =...
График функции
пересекает график функции
, при х =...
6. Функция принимает значения а) больше значений функции
б) меньше значений функции
а)
, если х ... б)
, если х ...
а) График функции
расположен выше графика функции
, при х =... б) График функции
, расположен ниже графика функции
, при х =...
7. а) функция возрастает на множестве М б) функция убывает на множестве М Пусть х1, х2ÎМ, а) если
, то
б) если
, то
а) с увеличением абсцисс точек на множестве М график функции «поднимается» вверх. б) с увеличением абсцисс точек на множестве М график функции «опускается» вниз.

Схема изучения конкретных функций:

1. Рассмотреть конкретные ситуации (или задачи), приводящие к данной функции.

На этом этапе изучения учащиеся должны убедится в целесообразности изучения данной функции, исходя из соображений практики или необходимости дальнейшего развития теории.