– Чому дорівнює загальна витрата тканини?
- Яка загальна витрата тканини?
- Знайти загальну витрату тканини.
- Обчислити загальну витрату тканини.
Цю роботу, за словами вчительки потрібно розпочинати з 1 класу. “Спочатку запитання без слова “скільки” пропоную я, а учні формулюють його, вводячи це слово. Згодом даю завдання: “Скажіть цю вимогу іншими словами”, або – “Сформулюйте запитання, не змінюючи умову і розв’язання.”
Тетяна Дорофєєва, вчитель початкових класів школи №6, м. Каховка, Херсонської області, має свою точку зору на питання – як навчити школярів
розв’язувати задачі. Ось що вона радить:
“ Насамперед слід навчити дитину складати короткий запис задачі, бо саме він допомагає відокремити шукане число від даних, встановити залежність між ними, правильно пояснити кожну дію, знайти правильний хід розв’язання. Форма короткого запису задачі залежить від умови, отже, учні повинні вміти вибирати опорні слова, орієнтуючись на головне слово в запитанні.
Так, у задачах на знаходження остачі діти, прочитавши запитання, швидко знаходять опорне слово залишилося. Спочатку можна практично показати, що це означає. Час від часу, слід пропонувати й такі умови, де є слово “залишилося”, але задачу треба розв’язувати не відніманням, а додаванням. Так діти вчаться брати до уваги не тільки окремі слова, а весь зміст задачі.” Ось, наприклад, такі задачі:
Задача 1. У Гната було 7 чистих зошитів. Три зошити він списав. Скільки чистих зошитів залишилося у Гната?
Задача 2. З минулого року в Олі залишилося 7 зошитів у клітинку і 3 зошити у лінійку. Скільки всього зошитів залишилося в Олі?
Відшукавши в запитанні другої задачі слово “залишилося”, учні міркують і доходять висновку, що це слово не є головним, бо з величинами нічого не траплялося, вони як і були, так і залишилися. І знаходять інше головне слово – “всього”. Отже, і опорні слова в цій задачі інші: зошити в лінійку і в клітинку.
“Щоб пояснити дію, учні мають знайти у короткому записі знак питання або два числа. Ця дія виконана, і провівши пальчиком вліво, прочитати слово. Якщо короткий запис зроблений у вигляді таблиці – відповідно вгору – вбік.
Щоб виділити у складеній задачі просту, числа, з’єднані в умові словами і, а (в значенні і), краще записувати поруч біля головного слова і негайно об’єднувати їх в одне число. Біля слова має стояти одне число. Якщо їх два – величина в задачі не відома, її треба знайти негайно.
Щоб навчити дітей складати числовий вираз до розв’язаної задачі, варто запропонувати їм такий алгоритм.
1. Знайдіть останню дію в задачі (підкресліть).
2. Подивіться на перше число останньої дії. Чи було воно в умові відоме? Так? Запишіть його.
3. Ні? Подивіться, як його одержали. Перепишіть той вираз (приклад), але без відповіді.
4. Перепишіть дію.
5. Аналогічно міркуйте над другим числом останньої дії.”
Отже, аналіз короткого запису показує відношення величин і допомагає у виборі дії.
Розділ 2. Методика навчання молодших школярів розв’язуванню складених задач
2.1Методичні підходи до опрацювання складених задач
Згідно з чинним законодавством в учнів початкової школи на уроках математики мають формуватися уміння розв’язувати прості і складені задачі різних видів. Шкільна практика свідчить про те, що найбільші труднощі викликають у дітей складені задачі.
У першому класі діти ознайомлюються з поняттям “задача”, вчаться розв’язувати прості задачі; у другому класі вводять нові задачі, які розв’язуються двома діями – це перші складені задачі. До цього, розв’язуючи задачу, учні одразу відповідали на її запитання, виконавши лише одну арифметичну дію. Під час розв’язування складених задач для відповіді на запитання слід виконати кілька арифметичних дій
Таким чином, потрібно спеціально готувати учнів до того, що не завжди, розв’язуючи задачу, можна одразу відповісти на ї запитання., тому що одне із числових значень поки що невідоме. З цього витікає необхідність ґрунтовної підготовчої роботи до введення задач на дві дії і продуманої методики вивчення поняття “складена задача” та подальшого формування у дітей умінь розв’язувати такі задачі.
Розв’язування складених задач – непростий за своєю структурою процес, що охоплює кілька елементарних дій:
-аналіз змісту задачі: виділення умови і запитання;
-до складання короткого запису і пояснення за ним даних задачі та запитання;
-проведення аналітичного (синтетичного) пошуку шляху розв’язання задачі, під час якого слід обирати числові дані;
-виділення на схемі аналізу (синтезу), а потім формулювання кожної простої задачі, що міститься в складеній;
-складання плану розв’язання задачі;
-запису розв’язку;
-запису відповіді.
Згідно з вимогами до формування умінь та навичок, сформульованими Л.М. Фрідманом, засвоюючи складну дію, формуючи відповідні уміння або навички, слід засвоювати окремо кожну з елементарних дій, з яких вона складається.
Розв’язуючи прості задачі, учні поступово опановують уміння аналізувати їх зміст – виділяти умову і запитання, пояснювати вибір арифметичної дії, якою вона розв’язується, записувати розв’язок, а також поступово формувати уміння:
-складати короткий запис задачі, пояснювати за ним дані задачі і запитання;
-міркувати від запитання задачі до числових даних (засвоюючи мовні конструкції: “Що потрібно знати, аби відповісти на запитання задачі?”, “Потрібно знати два числових даних: 1-ше… та 2-ге…”, “Яку арифметичну дію треба виконати, щоб відповісти на запитання задачі? Чому?”, “Дію…”);
-записати відповідь задачі, починаючи з шуканого числа.
Під час підготовчої роботи пропонуємо ознайомити учнів з аналітичним способом розв’язування задач через створення певних ситуацій, які підкреслюють:
1. Необхідність визначення, про що можна дізнатися за певними числовими даними (ставлячи запитання до даної умови).
2. Неможливість відповіді на запитання задачі через недостатність числових даних (під час розв’язування задач з недостатньою кількістю числових даних).
3. Необхідність вибору числових значень для відповіді на перше запитання (під час розв’язування задач з зайвими числовими даними).
4. Неможливість відповіді на запитання, поставлене до даної умови, одразу (під час роботи з задачами з двома запитаннями).
5. Можливість складання задачі з двох простих, пов’язаних за змістом, виходячи із попереднього розв’язку цих задач і об’єднання схем аналізу (під час роботи над простими задачами, що пов’язані за змістом).
6. Можливість постановки додаткового запитання, яке вводить у процес розв’язування усі три числові дані, та будування схем аналізу, що складається з двох циклів (під час роботи над задачами з зайвими числовими даними; над двома послідовними простими задачами і над задачами з двома запитаннями).
Отже, підготовча робота до ознайомлення учнів зі складеною задачею полягає у розв’язанні наступних видів завдань:
-добір запитання до даної умови так, щоб задача розв’язувалася певною (іншою) дією;
-складання задач, які розв’язуються даним виразом;
-складання задач з числами, які розв’язуються даною арифметичною дією;
-розв’язування задач:
- з недостатньою кількістю числових даних;
- з зайвими числовими даними;
- з двома послідовними запитаннями;
- двох послідовних простих задач;
- двох послідовних простих задач, друга з яких – з недостатньою кількістю даних.
Першим з пунктів до цього виду роботи є добірзапитання до даної умови метою якого є:
- навчити учнів ставити запитання до даної умови, на яке можна відповісти за числовими даними, що в ній міститься;
- закріпити мовні конструкції: “Для відповіді на запитання задачі потрібно знати два числових даних… На запитання задачі відповімо за допомогою арифметичної дії…”;
- вчити знаходити спільне і відмінне в текстових задачах.
Ось розглянемо для прикладу схему розбору задачі, в якій відсутнє запитання. Такі завдання подаються дітям для того, щоб вони досконало засвоїли структуру задачі.
Завдання 1. У гаражі було 11 машин. 8 машин поїхало.
- Це задача? Чому? (Це не задача, тому що тут немає запитання). Що треба зробити, щоб у нас вийшла задача? (Поставити запитання).
- Чи можна поставити таке запитання: “Скільки машин поїхало?” (Ні, тому що це вже відомо з умови). Чи можна поставити запитання: “Скільки червоних машин в гаражі?” (Ні, це запитання не пов’язане з умовою).
- Правильно, в задачі повинно бути таке запитання, відповісти на яке можна за числовими даними, поданими в умові. Які числові дані містяться в умові? (Число 11 – означає, скільки машин було в гаражі. Число 8 – означає, скільки машин поїхало.) Про що можна дізнатися за цими числовими даними? (Скільки машин залишилося в гаражі.)
- Складіть задачу з таким запитанням. Покажіть її опорну схему. Запишіть задачу коротко на дошці. Виділіть ключові слова:
Було – 11 м.
Поїхало – 8 м.
Залишилося – ? м.
- Повторіть запитання задачі. Що треба знати, аби відповісти на запитання “Скільки машин залишилося в гаражі?” Два числових даних: 1-ше – скільки машин було – 11, та 2-ге – скільки машин поїхало – 8.)
-
За допомогою якої арифметичної дії відповімо на запитання задачі? (Дії віднімання). ск. машин залишилося