Характерными особенностями практического метода при формировании элементарных математических представлений являются:
выполнение разнообразных практических действий, служащих основой для умственных действий;
широкое использование дидактического материала;
возникновение представлений как результата практических действий с дидактическим материалом;
выработка навыков счёта, измерения, вычисления и рассуждения в самой элементарной форме;
широкое использование элементарных математических представлений в практической деятельности, быта, игре, труде, т. е. в других видах деятельности.
Практический метод предполагает организацию упражнений. В процессе упражнений ребёнок неоднократно повторяет практические и умственные действия. Упражнения могут предлагаться детям в форме заданий, организовываться как действия с демонстрационным материалом или протекать в виде самостоятельной работы с раздаточным дидактическим материалом. Используются как коллективные (выполняются всеми детьми одновременно), так и индивидуальные (у стола воспитателя) формы выполнения упражнений.
Коллективные упражнения, помимо усвоения и закрепления знаний, могут использоваться для контроля. Индивидуальные упражнения, выполняя те же функции, служат образцом, на который дети ориентируются в коллективной деятельности. Взаимосвязь между ними определяется не только общностью функций, но и постоянным чередованием, закономерной сменой друг друга. Упражнения должны дифференцироваться по степени сложности с учётом индивидуальных особенностей детей.
Игровые элементы включаются в упражнения во всех возрастных группах: в младших - в виде сюрпризного момента, имитационных движений, сказочного персонажа и т. д.; в старших - приобретают характер поиска, угадывания, соревнования. В таких случаях говорят об игровых упражнениях или упражнениях в игровой форме.
С возрастом детей упражнения усложняются: они уже состоят из большего числа звеньев, учебно-познавательное содержание выступает в них прямо, не маскируясь практической или игровой задачей, во многих случаях для их выполнения требуется проявление смекалки, сообразительности.
Наиболее эффективны комплексные по характеру упражнения, дающие возможность одновременно решать несколько программных задач из разных разделов, органически сочетающихся друг с другом, например: «количество и счёт» и «величина»; «количество и счёт» и «Геометрические фигуры» и т. д. Такие упражнения повышают коэффициент полезного действия занятия, увеличивают его плотность. Содержательность упражнений обеспечивает достаточно высокой уровень умственной нагрузки на дошкольников в процессе всего занятия. (см. Приложение 1)
При подборе упражнений учитывается не только их «сочетаемость» в одном занятии, но и дальнейшая перспектива. Система упражнений на одном занятии должна органично вписываться в общую систему разнообразных упражнений, проводимых в течение года. [11, 114-116]
Упражнения могут быть репродуктивными, основанными на воспроизведении способа действия, в которых действия детей полностью регламентируются воспитателем в виде образца, предписания, требований, инструкции, правил (алгоритмов), определяющих, что и как надо делать. Ход и результат упражнения находится под непосредственным наблюдением и контролем воспитателя, который своими указаниями, пояснениями, непосредственной помощью корректирует действия детей. Обучение счёту, измерению, простейшим вычислениям и связанным с ними рассуждениями требует большого количества таких упражнений. [10, 54]
Продуктивные упражнения характеризуются тем, что способ действия дети должны полностью или частично открыть сами. Они развивают самостоятельность мышления, вырабатывают целенаправленность и целеустремлённость. Воспитатель обычно говорит, что надо делать, но не сообщает и не демонстрирует способа действия. При выполнении упражнений ребёнок прибегает к мыслительным и практическим пробам, выдвигает предположения и проверяет их, мобилизирует имеющиеся знания, учится использовать их в новой ситуации, проявляет сообразительность, смекалку. При выполнении таких упражнений воспитатель оказывает помощь лишь в косвенной форме, предлагает детям подумать ещё раз попробовать, одобряет правильные действия, напоминает об аналогичных упражнениях, которые ребёнок уже выполнял и т.д. [11, 116]
Однако излишнее использование практических методов, задержка на уровне практических действий может отрицательно сказываться на ребёнке. [13, 99]
При формировании элементарных математических представлений игра выступает, как метод обучения и может быть отнесена к практическим методам.
Широко используются разнообразные дидактические игры. Благодаря обучающей задаче, облечённой в игровую форму (игровой замысел), игровым действиям и правилам ребёнок непреднамеренно усваивает определённую «порцию» познавательного содержания. Все виды дидактических игр (предметные, настольно-печатные, словесные и др.) являются эффективным средством и методом формирования элементарных математических представлений у детей во всех возрастных группах. Предметные и словесные игры проводятся на занятиях по математике и вне их, настольно-печатные, как правило, в свободное от занятий время. Все они выполняют основные функции обучения - образовательную, воспитательную и развивающую. [11, 117]
Все дидактические игры по формированию элементарных математических представлений разделены на несколько групп:
1. Игры с цифрами и числами
2. Игры путешествие во времени
3. Игры на ориентировки в пространстве
4. Игры с геометрическими фигурами (см. Приложение 2)
5. Игры на логическое мышление
Знания в виде способов действий и соответствующих им представлений ребёнок получает первоначально вне игры, в играх лишь создаются благоприятные условия для их уточнения, закрепления, систематизации. Структура большинства дидактических игр не позволяет сообщить детям новые знания, однако это не означает что в принципе такое невозможно. [11, 118]
В настоящее время разработана система так называемых обучающих игр. В отличие от существующих они позволяют формировать у детей принципиально новые знания, которые нельзя получить непосредственно из окружающей действительности, так как их содержанием являются абстрактные понятия математики. Основной их целью является подготовка мышления дошкольника к восприятию фундаментальных математических понятий: «множество и операции над множествами», «функция», «алгоритм» и т. д. В этих играх используется специфический дидактический материал, подобранный по определённым признакам. Моделируя математические понятия, он позволяет выполнять логические операции: разбиение множества на классы, отыскание объектов по необходимым и достаточным критериям и т. д. Игры, содержание которых ориентировано на формирование математических понятий, способствуют абстрагированию в мыслительной деятельности, учат оперировать обобщёнными представлениями, формируют логические структуры мышления. [3, 94]
Дидактические игры выполняют обучающую функцию успешнее, если они применяются в системе, предполагающей вариативность, постепенное усложнение и по содержанию, и по структуре, связь с другими методами и формами работы по формированию элементарных математических представлений.
При подборе дидактических игр для занятий, индивидуальной работы с детьми воспитатель обращается к разнообразным источникам, использует народные и авторские игры, с предметами и без них.
Дидактические игры могут применяться в качестве одного из методов проведения занятий, индивидуальной работы, быть формой организации самостоятельной познавательной деятельности детей.
Игра как метод обучения и формирования элементарных математических представлений предполагает использование отдельных элементов разных видов игр (сюжетно-ролевой, игры-драматизации, подвижной и т. д.), игровых приёмов (сюрпризный момент, соревнование, поиск и т. д.), органическое сочетание игрового и дидактического начала в виде руководящей, обучающей роли взрослого и возрастающей познавательной активности и самостоятельности ребёнка. [11, 118-119]
Обеспечить всестороннюю математическую подготовку детей всё-таки удаётся при умелом сочетании игровых методов и методов прямого обучения. Хотя понятно, что игра увлекает детей, не перегружает их умственно и физически. Постепенный переход от интереса детей к игре к интересу к учению совершенно естествен. [13, 102]
Наглядные и словесные методы в обучении математике не являются самостоятельными. Они сопутствуют практическим и игровым методам. Но это отнюдь не умаляет их значения в математическом развитии детей.
К наглядным методам обучения относятся: демонстрация объектов и иллюстраций, наблюдение, показ, рассматривание таблиц, моделей. К словесным методам относятся: рассказывание, беседа, объяснение, пояснения, словесные дидактические игры. [13, 99-100]
1. Демонстрация воспитателем способа действия в сочетании с объяснением. Это основной приём обучения, он носит наглядно-действенный характер, выполняется с помощью разнообразных дидактических средств, даёт возможность формировать навыки и умения у детей. К нему, как правило, предъявляют следующие требования:
чёткость, «пошаговая» расчленённость демонстрации;
согласованность действий со словесными пояснениями;
точность, краткость и выразительность речи, сопровождающей показ способов действия;
активизация восприятия, мышления и речи детей.
Этот приём чаще всего используется при сообщении новых знаний.