Метод координат – это универсальный метод. Он обеспечивает тесную связь между алгеброй и геометрией, которые, соединяясь, дают «богатые плоды», какие они не могли бы дать, оставаясь разделенными.
В отношении школьного курса геометрии можно сказать, что в некоторых случаях метод координат дает возможность строить доказательства и решать многие задачи более рационально, красиво, чем чисто геометрическими способами. Метод координат связан, правда, с одной геометрической сложностью. Одна и та же задача получает различное аналитическое представление в зависимости от того или иного выбора системы координат. И только достаточный опыт позволяет выбирать систему координат наиболее целесообразно.
Глава 2
Методические основы обучения координатному методу
2.1.Этапы решения задач методом координат
Чтобы решать задачи как алгебраические, так игеометрические методом координат необходимо выполнение3 этапов:
1) перевод задачи на координатный (аналитический) язык;
2)преобразование аналитического выражения;
3)обратный перевод, т. е. перевод с координатного языка на язык, в терминах которого сформулирована задача.
Для примера рассмотрим алгебраическую и геометрическую задачи и проиллюстрируем выполнение данных 3 этапов при их решении координатным методом.
№1. Сколько решений имеет система уравнений.
Решение:
1 этап: на геометрическом языке в данной задачетребуется найти, сколько точек пересечения имеют фигуры,заданные данными уравнениями. Первое из них являетсяуравнением окружности с центром в начале координат и радиусом, равным 1, а второе — уравнением параболы.
2 этап: построение окружности и параболы; нахождение точек их пересечения.
3 этап: количество точек пересечения окружности и параболы является ответом на поставленный вопрос.
№2. Найдите множество точек, для каждой из которых расстояния от двух данных точек равны.
Решение:
Обозначим данные точки через А и В. Выберем систему координат так, чтобы ось Ох совпадала с прямой АВ, а началом координат служила точка А Предположим далее, что АВ=а, тогда в выбранной системе координат А(0,0) и В(а,0). Точка М(х,у) принадлежит искомому множеству тогда и только тогда, когда АМ=МВ, или, что то же самое, АМ2=МВ2. Используя формулу расстояния от одной точки координатной плоскости до другой, получаем АМ2=x2+y2,MB2=(x-a)2+y2. Тогда х2+у2=(х-а)2 + у2
Равенство х2+у2=(х-а)2+у2и является алгебраической моделью ситуации, данной в задаче. На этом заканчивается первый этап ее решения (перевод задачи на координатный язык).
На втором этапе осуществляется преобразование полученного выражения, в результате которого получаемсоотношение
.На третьем этапе осуществляется перевод языка уравнения на геометрический язык. Полученное уравнение является уравнением прямой, параллельнойоси Оу и отстоящей от точки А на расстояние
, т.е. серединного перпендикуляра к отрезку АВ.2.2 Задачи, обучающие координатномуметоду
Для разработки методики формирования умения применятькоординатный метод важно выявить требования, которые предъявляет логическая структура решения задач мышлению решающего. Координатный метод предусматривает наличие у обучающихся умений и навыков, способствующих применению данного метода на практике. Проанализируем решение нескольких задач. В процессе этого анализа выделим умения, являющиеся компонентами умения использовать координатный метод при решении задач. Знание компонентов этого умения позволит осуществить его поэлементное формирование.
Задача №1 . В треугольнике ABC: AC=b, AB=c, ВС=а, BD -медиана.Докажите, что
.Выберем систему координат так, чтобы точка А служила началом координат, а осью Ох - прямая АС (рис. 2).
(умение оптимально выбирать систему координат, т. е. так, чтобы наиболее просто находить координаты данных точек).В выбранной системе координат точки А, С и D имеютследующие координаты: А(0,0), D(
,0) и С(b,0)(умение вычислять координаты заданных точек). Обозначим координаты точки В через х и у. Тогда используя формулу для нахождения расстояний между двумя точками, заданными своими координатами, получаем:
х2+у2=с2 , (x-b)2+y2=a2 (1)
(умение находить расстояние между двумя точками, заданными координатами)
По той же формуле
. (2)Используя формулы (1) находим х и у.
Они равны:
; .Далее, подставляя х и у в формулу (2), находим
. .(умение выполнять преобразования алгебраических выражений)
Задача №2. Найти множество точек, для каждой из которых разность квадратов расстояний от двух данных точек есть величина постоянная.
Обозначим данные точки через А и В. Выберем систему координат так, чтобы ось Ох совпадала с прямой АВ, а началом координат служила точка А.
(умение оптимально выбирать систему координат).
Предположим АВ=а, тогда в выбранной системе координат А(0,0), В(а,0).
(умение находить координаты заданных точек)
Точка М(х,у) принадлежит искомому множеству тогда только тогда, когда AM2-MB2=b2 где b- постоянная величина
(умение переводить геометрический язык на аналитический, составлять уравнения фигур).
Используя формулу расстояний между двумя точками, получаем:
, ,(умение вычислять расстояние между точками, заданными координатами),или
.Данное уравнение является уравнением прямой, параллельной оси Оу и отстоящей от точки А нарасстояние .(умение видеть за уравнением конкретныйгеометрический образ)
Нетрудно видеть, что и для решения этой задачи необходимо овладение перечисленными выше умениями. Кроме того, для решения приведенной задачи, а также и других задач важно умение «видеть за уравнением» конкретный геометрический образ, котороеявляется обратным к умению составлять уравненияконкретных фигур.
Выделенные умения являются основой при решении иболее сложных задач.
Задача №3. В трапеции меньшая диагональ перпендикулярна основаниям. Найти большую диагональ, если сумма противоположных углов равна
, а основания равны а и b.Направим оси координат по меньшей диагонали и одному из оснований (рис. 3).
(умение оптимально выбирать систему координат).Тогда точка А имеет координаты (0,0), точка В - (а,0), точка С - (0,c), точка D - (b,c).
(умение находить координаты заданных точек)
Пусть
и острые углы в трапеции АВСD, тогда их сумма равна . Для вычисления длины большей диагонали BD надо найти значение с. Его можно вычислить 2 способами. Первый - из прямоугольного треугольника АВС по формуле находим . Второй способ из прямоугольного треугольника ACD: . Отсюда получили, что (1)Из равенства (1) находим отношение
: оно равно - , так как . Выразим . Он равен , исходя из этого, пользуясь зависимостью (1), получаем .(умение выразить недостающие координаты через уже известные величины)