Содержание.
Введение
Глава 1
1.1 Обзор научной, методической и научно-популярной литературы по теме
исследования
1.2 Анализ учебников и учебных пособий
1.3 Основные принципы построения методики изучения стохастической линии в курсе математики основной школы
Введение
В настоящее время теория вероятностей завоевала очень серьезное место в науке и прикладной деятельности. Её идеи, методы и результаты не только используются, но и буквально пронизывают все естественные и технические науки, экономику, планирование, организацию производства, связи, а также такие далекие, казалось бы, от математики науки, как лингвистику и археологию. Сейчас без достаточно развитых представлений о случайных событиях и их вероятностях, без хорошего представления о том, что явления и процессы, с которыми мы имеем дело, подчиняются сложным законам теории вероятностей, невозможна продуктивная деятельность людей ни в одной сфере жизни общества.
В нашу жизнь властно вошли выборы и референдумы, банковские кредиты и страховые полисы, таблицы занятости и диаграммы социологических опросов. Общество все глубже начинает изучать себя и стремиться сделать прогнозы о себе самом и о явлениях природы, которые требуют представлений о вероятности.
Мы должны научить жить наших детей в вероятностной ситуации, а это, значит, извлекать, анализировать и обрабатывать информацию, принимать обоснованные решения в разнообразных ситуациях со случайными исходами. Именно ориентация на формирование личности, способной жить и работать в сложном, постоянно меняющемся мире, с неизбежностью требует развития вероятностно-статистического мышления у подрастающего поколения, а значит, эта задача должна быть решена уже в школьном курсе математики.
Как известно, современная концепция школьного математического образования ориентирована, прежде всего, на учет индивидуальности ребенка, его интересов и склонностей. Этим определяются критерии отбора содержания, разработка и внедрение новых методик, изменения в требованиях к математической подготовке учащихся. И с этой точки зрения, когда речь идет о формировании личности с помощью математики, необходимость развития у всех школьников вероятностной интуиции и статистического мышления становится насущной задачей.
Одновременно с этим само знакомство школьников с этой, очень своеобразной, областью математики, где между черным и белым существует целый спектр цветов и оттенков, возможностей и вариантов, а между однозначным "да" и "нет" существует еще "быть может", причем это "быть может" поддается строгой количественной оценке, способствует устранению укоренившегося ощущения, что происходящее на уроках математики никак не связано с окружающим миром, с повседневной жизнью. Согласно данным ученых-физиологов и психологов, а также по многочисленным наблюдениям учителей математики, в среднем звене школы заметно падение интереса к математике и связано это с тем, что у ученика зачастую создается ощущение непроницаемой стены между изучаемыми абстрактно-формальными объектами и реальным миром. Именно вероятностно-статистическая линия, или, как ее стали называть в последнее время, - стохастическая линия, изучение которой невозможно без опоры на процессы, наблюдаемые в окружающем мире, на реальный жизненный опыт ребенка, способна содействовать возвращению интереса к самому предмету "математика", пропаганде его значимости и универсальности.
Как известно, опыт преподавания в школе основ теории вероятностей в период реформы 60-70 гг. на формально-логическом уровне дал в основном негативные результаты, что привело к изъятию этого раздела из школьных программ: материал оказался сложным, плохо усваивался учащимися. К тому же неоднократно проводимые исследования знаний учащихся старших математических классов показали, сколь мало эти знания способствуют развитию вероятностной интуиции и статистического мышления.
Однако совсем недавно было вновь принято решение ввести этот материал в курс математики основной школы. Внедрение вероятностно-статистической линии в базовый школьный курс математики породило немало проблем. К его появлению оказались не готовы буквально все – от учителей математики до авторов учебников. Удивительно, но, обладая одной из наиболее известных и признанных во всем мире академических школ теории вероятностей, мы до сих пор не имеем ни общей концепции преподавания этого раздела математики в школе, ни достаточного количества учебных пособий для школьников, содержащих соответствующий материал.
Как показывает анализ учебников и учебных пособий, содержащих материал по данной теме, существуют проблемы как в вопросах изложения этого достаточно сложного материала в школьном курсе, так и в определении содержания, необходимого для успешного усвоения и понимания основ теории вероятностей и статистики и его соответствия содержанию и требованиям государственного стандарта по математике.
Таким образом, актуальность темы работы обусловлена:
· необходимостью полноценного изучения важнейших элементов теории вероятностей и математической статистики в основной школе в связи с огромной значимостью и важностью этого материала;
· «новизной» изучаемого материала, который долгое время отсутствовал в курсе математики основной школы;
· недостаточной разработанностью методики преподавания этого материала в школьном курсе математики;
· существованием проблем в вопросах изложения этого материала в различных учебных пособиях.
В связи с этим для исследования была выбрана тема «Понятие вероятности и элементы статистики в основной школе».
Проблемой исследования является поиск путей совершенствования методики изучения вероятностно-статистической линии в основной школе.
Объект исследования – процесс изучения элементов теории вероятностей и математической статистики в курсе математики основной школы.
Основные цели работы – изучить теоретические аспекты, разработать практические рекомендации по методике изучения стохастической линии в курсе математики основной школы, применить некоторые из них при изучении этого раздела школьниками, проанализировать и сделать выводы о правильности и целесообразности разработанных практических рекомендаций.
Гипотеза: изучение вероятностно-статистической линии школьниками на основе разработанной методики способствует полноценному и качественному усвоению этого достаточно сложного материала, развитию правильных представлений о данном разделе математики и умений применять полученные знания в практической жизни.
Гипотеза, проблема и цели исследования определяют следующие задачи:
· изучить и проанализировать научную, учебно-методическую и психолого-педагогическую литературу по теме исследования;
· на основе анализа литературы разработать методику изучения некоторых вопросов стохастической линии в курсе математики основной школы;
· на основе применения разработанных методических рекомендаций сделать выводы об их правильности и целесообразности;
· на основе опытного преподавания проанализировать, как воспринимается этот материал учащимися: степень заинтересованности при изучении этого материала, уровень доступности, трудности, возникающие при изучении этого материала, качество усвоения.
Для достижения целей работы, проверки гипотезы и решения поставленных задач были использованы следующие методы:
· изучение учебных пособий и методической литературы, содержащей этот материал;
· анализ психологической, педагогической и методической литературы по данной теме;
· опытное преподавание.
Основной опытно-экспериментальной базой является 9 класс средней школы № 37 города Кирова с углубленным изучением отдельных предметов.
Глава 1
1.1 Обзор научной, методической и научно-популярной
литературы по теме исследования.
Проанализируем основные научные источники по теории вероятностей и математической статистике и выявим, как отражены в них вопросы, отведенные для изучения в школьном курсе.
Число различных определений математической вероятности, предложенное теми или иными авторами научной литературы, очень велико. С другой стороны, каждое из них можно отнести к одной из 4 групп определений математической вероятности:
· определения, сводящие понятие вероятности к понятию «равновозможности» как к более примитивному понятию, - классическое определение вероятности.
· геометрическое определение вероятности.
· определения, основанные на частоте появления события в длинной серии экспериментов, - статистическое определение вероятности.
· аксиоматическое определение вероятности.
В научной литературе последовательность введения понятия вероятности различна.
Гмурман В.Е. в книге «Теория вероятностей и математическая статистика» рассматривает сначала классическое понятие вероятности, затем указывает его недостатки и вводит статистическое понятие вероятности и геометрическую вероятность. Далее он излагает теоремы сложения и умножения вероятностей и их следствия. Материал, посвященный статистике, содержит все понятия, касающиеся статистического распределения выборки, также рассматриваются понятия полигона и гистограммы частот.
Гнеденко Б.В. в книге «Курс теории вероятностей» тоже начинает введение в теорию вероятностей с классического определения. Позже, указывая его ограниченность, он вводит вначале геометрическое, а затем и статистическое определение вероятности. В более позднем издании в соавторстве с Хинчиным А.Я. в книге «Элементарное введение в теорию вероятностей» он использует только статистическое понятие вероятности.
Колмогоров А.Н., Журбенко И.Г., Прохоров А.В. в книге «Введение в теорию вероятностей» на простых примерах вводят основные понятия теории вероятностей. Первым рассматривается классическое определение вероятности, вторым – статистическое.