Этот пример служит практической иллюстрацией абстрактной схемы, приведенной на рис. 10.
Пример 6. Что больше
Решение представлено на рис. 12. Необходимо сравнить два числа. На этапе диагностики проблемы было установлено что непосредственное сравнение затруднительно. На этапе редукции была построена функция (обобщение по двум ее значениям) . На этапе трансформации из методов доказательства монотонности функции выбрали наиболее подходящий с использованием производной . На этапе верификации доказали монотонность.
На этапе верификации путем исследования полученного решения убедились в правильности решения задачи.
Таким образом, при использовании мета-алгоритма для решения учебных математических задач появляется возможность наглядней представлять ход решения задачи.
Причем на этапах диагностики и редукции преимущественно используется анализ (проблемы решения), на этапах трансформации и верификации – синтез (идеи решения). Тем самым, используя при решении задачи мета-алгоритм, ребенок на уроках математики осознано учиться использовать разные способы мышления.
Обучение – это замена удивления пониманием …
Виктор Кротов
Известно, что ни одно событие в материальном мире не происходит без видоизменения вещества и энергии (поля). Взаимодействие этих двух составляющих и определяет все многообразие мира.
При решении задач зачастую трудно сразу найти решение, требуются тактические шаги, конкретизирующие наши действия. Для этого нужен точный анализ взаимодействия веществ и энергии в оперативной зоне задачи, с точки зрения ТРИЗ.
Выйти из этого положения в изобретательской деятельности позволяет так называемый вепольный анализ. Слово «веполь» образовано от слов «вещество» и «поле». Вепольный анализ проводится в оперативной зоне возникновения задачи, т. е. там, где выявлено физическое противоречие. В этом месте обязательно должны быть два вещества
В нашей работе будем придерживаться упрощенной схемой вепольного анализа [2, 35], основанного на двух правилах:
1) если одно вещество вредно воздействует на другое, то между ними вводят третье вещество;
2) если поле вредно воздействует на вещество, то между ними водят второе поле, нейтрализующее действие первого, или его вредное действие оттягивает третье вещество.
При решении учебных математических задач в роли «веществ» выступают объекты математики (геометрические фигуры, числа), а в качестве поля свойства объектов, их движение и т.п.
Пример 7. Может ли пятизначное число равняться произведению своих цифр [49]?
Решение. Применим вепольный анализ ТРИЗ, для этого необходимо определить как минимум два вещества и поле, воздействующее на них.
Пусть есть число
Используем первое правило вепольного анализа, введем новое вещество
Пример 8. Как нужно у квадрата срезать 4 угла, чтобы получился правильный восьмиугольник?
На вепольном языке получаем, что есть одно вещество
При использовании элементов вепольного анализа решение задачи сводиться к нахождению третьего вещества или нового поля, что значительно легче решения первоначальной задачи. Начальные рассуждения на вепольном языке кажутся слишком «затянутыми» и затруднительными, но, как показывает практика, при хорошей отработке элементов вепольного анализа их использование при решении задач происходит уже «подсознательно».
ТРИЗ является продолжением диалектики Аристотеля и Гегеля и дополняет их конкретными инструментальными методами преодоления противоречий. Поэтому ТРИЗ позволяет более описывать, а главное – проектировать процессы развития различных систем [30]. Таким образом, изучая любую систему, можно более глубоко понять эту систему и одновременно формировать творческое мышление, если рассматривать ее как результат развития системы-предшественницы, преодоления в ней противоречий в соответствии с теми закономерностями, которые теперь известны, как законы, принципы, приемы, стандарты ТРИЗ [40]. Один из вариантов такого рассмотрения – переизобретение знаний с помощью ТРИЗ.
Объектами изучения в математике являются глубинные закономерности нашего мира, выраженные в математических понятиях и правилах. И те, и другие, согласно ТРИЗ, а также философским наукам системологии и диалектике, являются развивающимися системами. Рассмотрим возможности их переизобретения в учебном процессе.
При использовании элементов ТРИЗ-педагогики при изучении школьной математики путем переизобретения знаний вполне возможно, если переизобретать не закономерности, а описывающие их понятия и правила.
Пример 9. Рассмотрим совокупность равенств типа
Пример 10. Когда-то людям были известны только целые числа. Но их оказывалось недостаточно, когда было необходимо измерять доли каких-либо объектов. В результате стихийного применения принципа дробления люди создали идею дробей. Развитие дробных чисел можно рассматривать и дальше. Первые дроби у древних (унция и т. п.) были очень неудобны, особенно при арифметических операциях. Проблема была решена с использованием для записи дробных чисел их предшественников – целых чисел – стихийным применением закона перехода в бисистему. Современная простая дробь – это бисистема из числителя и знаменателя. Смешанные числа – это полисистемы из целой части, числителя и знаменателя. Проблема сложения и вычитания простых дробей с разными знаменателями была решена путем стихийного применения принципа эквипотенциальности (приведение к общему знаменателю). Все же у простых дробей правила выполнения арифметических операций, хотя и достаточно понятны, но не совсем просты, отличаются от правил операций с целыми числами. Проблема была решена стихийным применением к целым числам принципа инверсии. В десятичных дробях вес разрядов справа от запятой (по степеням 10) – отрицательный, в противоположность положительному весу разрядов слева от запятой.