Если множество M, на котором определены обе части уравнения (неравенства), окажется пустым множеством, то в этом случае уравнение (неравенство) решений не имеет [2], [31].
Пример 1. Решить уравнение
ОДЗ этого уравнения состоит из всех x, одновременно удовлетворяющих условиям
. Это значит, что ОДЗ есть пустое множество. Этим решение уравнения и завершается, т. к. установлено, то ни одно число не может являться решением, т.е. уравнение не имеет корней.Ответ: решений нет.
При решении неравенств иногда можно не находить ОДЗ, а решать неравенство переходом к равносильной ему системе неравенств, в которой либо одно из неравенств не имеет решений, либо знание его решения помогает решить систему неравенств.
Пример 2. Решить неравенство
Нахождение ОДЗ неравенства есть трудная задача, поэтому перейдем к равносильной ему системе неравенств
.Третье неравенство имеет решение
. Первое и второе неравенство справедливо лишь для x из промежутка . Поэтому этот промежуток является множеством решений системы.Ответ:
.2. Использование монотонности функций при решении уравнений и неравенств. Это свойство при решении уравнений и неравенств используется чаще всего. Решение уравнений и неравенств с применением монотонности функций основывается на следующих утверждениях [21], [31]:
2.1Пусть f(x) – непрерывная и строго монотонная функция на некотором промежутке. Тогда уравнение вида f(x)=c, где с – данная константа, может иметь не более одного решения на этом промежутке.
2.2.Пусть f(x) и φ(x) непрерывные на некотором промежутке функции. Тогда если f(x) монотонно возрастает, а φ(x) убывает, то уравнение f(x)=φ(x) имеет не более одного решения на этом промежутке.
2.3.Пусть функция f(x) возрастает на своей области определения. Тогда для решения неравенства f(x)>c достаточно решить уравнение f(x)=c. Если x0 – корень, то решениями неравенства будут значения
, принадлежащие области определения f(x).Рассмотрим на примерах, как используются эти утверждения.
Пример 3. Решить неравенство
. Существует стандартный прием решения: возведение в квадрат (при условии 0). Мы рассмотрим решение данного неравенства с использованием свойства монотонности. Функция, расположенная в левой части неравенства, монотонно возрастает, в правой части - убывает. Из этого следует, что уравнение имеет не более одного решения, причем если x0 – решение этого уравнения, то при будет , а решением данного неравенства будет . Значение легко подбирается: .Ответ:
.Пример 4. Решить уравнение
Данное уравнение имеет очевидное решение
. Докажем, что других решений нет. Поделим обе части на , получим . Левая часть представляет собой монотонно убывающую функцию. Правая часть функция постоянная. Следовательно, каждое свое значение она принимает один раз, то есть данное уравнение имеет единственное решение.Ответ:
. . При решении уравнений данного вида используются следующие утверждения [2], [5], [31]:1) пусть область существования функции
есть промежуток M и пусть эта функция непрерывна и строго монотонна на этом промежутке. Тогда уравнение будет равносильно системе ;2) если множество M совпадает с R, то уравнения и
равносильны;В школе чаще пользуются не этой теоремой, а ее следствиями:
3) уравнение равносильно системе
(При условии, что );4) для любого натурального числа 2m уравнение
равносильно системе .Заметим, что в этих двух системах любое из неравенств можно опустить.
Пример 5. Решить уравнение
Данное уравнение равносильно системе
. Уравнение имеет два корня . Неравенству удовлетворяет только первый корень. Следовательно система, а, значит, и равносильное ей уравнение имеют единственное решение.Ответ:
.4. Использование понятия области изменения функции. При изучении уравнений в школе обращается внимание учащихся на нахождении области допустимых значений неизвестного. Однако в стороне остаются такие вопросы: если область допустимых значений неизвестного непустое множество, то всегда ли существует решение, какие необходимые условия его существования? Если существует решение, то нельзя ли сузить границы корней?
Дать ответы на эти вопросы можно, если использовать понятие области изменения функции (или область значений).
Пусть дано уравнение f(x)= ,где f(x) и - элементарные функции, определенные на множествах X1 и X2. Тогда областью допустимых значений x для уравнения будет множество, состоящее из тех значений x, которые принадлежат обоим множествам, то есть A= X1∩X2. Если множество A пустое (A= ), то уравнение решений не имеет. Поэтому рассмотрим случай, когда A≠ .
Обозначим области изменения этих функций соответственно через Y1 и Y2. Если x1 является решением уравнения, то будет выполняться числовое равенство f(x1)= , где f(x1) – значение функции f(x) при x=x1, а значение функции при x=x1.
Значит, если уравнение имеет решение, то области значений функции f(x) и имеют общие элементы (Y1∩Y2≠ ). Если же таких общих элементов множества Y1 и Y2не содержат, то уравнение решений не имеет. Из того, что Y1∩Y2≠ , еще не следует существование решения, ибо это есть только необходимое, а не достаточное условие. Эти рассуждения полезно подкрепить графиками [41].
Пусть дано неравенство f(x)≤ ,где f(x) и - элементарные функции, определенные на множествах X1 и X2, причем X1∩X2≠ . Обозначим области изменения этих функций соответственно через Y1 и Y2. Если промежуток
является решением неравенства, то для любого x из этого промежутка будет выполняться числовое неравенство f(a)≤ , где f(a) – значение функции f(x) при x=a, а значение функции при x=a. Значит, если неравенство имеет решение, то области значений функции f(x) и имеют общие элементы (Y1∩Y2≠ ). Если же таких общих элементов множества Y1 и Y2не содержат, то уравнение решений не имеет.