1.9 Элективные курсы в образовательной области «Математика»
В старших классах школы изучаются два предмета, составляющих образовательную область “Математика”, – алгебра и основы математического анализа и геометрия.
Сейчас наметилась тенденция наличия в учебном плане школы одного предмета – математики. Можно предположить, что в создаваемой профильной школе, скорее всего, в классах естественнонаучного математического профиля, сохранится раздельное обучение алгебре и геометрии. А вот в классах других профилей в учебном плане, вероятнее всего, будет присутствовать интегрированный курс математики.
Специфика преподавания математики в старших классах во многом определяется еще и тем, что экзамен по математике (в данное время по алгебре и началам анализа) является обязательным для всех школьников. В настоящее время этот экзамен проводится в виде ЕГЭ. Единый государственный экзамен по математике – процедура серьезная, требующая специальной подготовки.
Математику, в отличие от других предметов, сдают в вузах разного профиля (математических, естественнонаучных, технических, экономических, военных, связанных с математической лингвистикой и т. д.). С введением ЕГЭ на учителя математики явно или неявно возлагается еще большая ответственность за сдачу его выпускниками вступительных экзаменов в вуз.
Из всего вышеизложенного можно сделать вывод, что в профильной школе математика займет весьма важное место, учитель математики независимо от профиля будет, так или иначе, стремиться к увеличению числа учебных часов по своему предмету, поэтому, скорее всего, абсолютное большинство учителей математики будут заинтересованы во введении элективных курсов.
Вывод по параграфу: изложенные выше цели, задачи, типы, требования к элективным курсам необходимо учитывать при разработке любого элективного курса.
§2. Использование свойств функций при решении уравнений и неравенств
2.1. Общие методы решения уравнений
В методической литературе [25], [26] принято все методы, на которых основана школьная линия уравнений и неравенств с 7 по 11 классы, делить на три группы:
- метод разложения на множители;
- метод введения новых переменных;
- функционально-графический метод.
В данной работе мы рассмотрим третий метод, а именно, использование графиков функций и различных свойств функций.
К применению функционально-графического метода школьников необходимо приучать с самого начала изучения темы «Уравнения».
Решение некоторых задач может быть основано на свойствах монотонности, периодичности, четности или нечетности и т.п. входящих в них функций.
2.2. Анализ школьных учебников
Проанализировав учебники, можно сделать вывод, что данная тема рассматривается только в учебниках математики нового поколения [2], [3], [5], [6] Построение курса в этих учебниках осуществляется на основе приоритетности функционально-графической линии. В остальных учебниках функционально-графический метод решения уравнений и неравенств в отдельную тему не выделен. Использование свойств функции для решения задач упоминается вскользь при изучении других тем. В новых учебниках содержится также достаточное количество заданий этого типа. В учебнике [2] содержатся задания повышенного уровня. Приведена наиболее полная система заданий, систематизированная по каждому свойству функции.
Учебник | А.Г.Мордкович «Алгебра и начала анализа 10-11», учебник для общеоб-разовательных учреждений[5], [6] | А.Г.Мордкович, П.В.Семенов «Алгебра и начала анализа 11», учебник для общеобразовательных учреждений (профильный уровень) [3] | С.М.Никольский и др. «Алгебра и начала анализа 11», учебник для общеобразовательных учреждений[2] | А.Н. Колмогоров и др. «Алгебра и начала анализа 11», учебник для общеобразовательных учреждений[4] | Ш.А. Алимов и др. «Алгебра и начала анализа 10-11», учебник для общеобразовательных учреждений[1] |
Место в курсе | Глава 8 «Уравнения и неравенства. Системы уравнений и неравенств» (последняя тема курса) | Глава 6 «Уравнения и неравенства. Системы уравнений и неравенств» (последняя тема курса) | Глава II «Уравнения, неравенства, системы» | Нет отдельно выделенной темы. Но в теме «Решение тригонометрических уравнений и неравенств» формулируется теорема о корне, которая используется в дальнейшем изучении | Нет отдельно выделенной темы |
Содержание темы | - §56 Общие методы решения уравнений и неравенств ( , функционально-графический метод: теорема о корне, ограниченность функции) | - §27 Общие методы решения уравнений и неравенств ( , функционально-графический метод: теорема о корне, ограниченность функции) | - Уравнения (неравенства)вида ; - §12*Нестадартные методы решения уравнений и неравенств (использование областей существования функций, неотрицательности функций, ограниченности, использование свойств sin и cos, использование производной) | Свойство монотонности функции, четности-нечетности (при выводе формул корней тригонометрических уравнений) | Упоминается свойство монотонности при разборе примера в теме «Показательная функция» |
Примеры рассматриваемых уравнений и неравенств | ( ; ); | Решить уравнение . Сколько корней, принадлежащих данному промежутку, имеет уравнение ? | Решить уравнение |
2.3. Анализ ЕГЭ (текстов и результатов)
Единый государственный экзамен как форма аттестации, которая введена в практику российского образования в 2002 году, с 2009 года переходит из экспериментального в штатный режим.
Анализ текстов ЕГЭ показал, что задания, при решении которых используются свойства функций встречаются каждый год.
В 2003 году в заданиях А9 и С2 при решении можно применить свойства функций:
· А9. Укажите промежуток, которому принадлежат корни уравнения
. (выполнили верно 64,1% учащихся).· С2. Найдите все значения p, при которых уравнение
не имеет корней. (104 учащихся получили 4 балла, 36 – 3балла, 56 – 2балла, 261 – 1балл, не справились с заданием 13696 учащихся) [33].В 2004 году – задание В2. Сколько корней имеет уравнение
. (выполнили верно менее 40% учащихся) [34].В 2005 году задание С2 (решите уравнение
) выполнили 37% учащихся [42].В 2007 при выполнении задания "Решите уравнение" в части В выпускники при решении уравнения
рассматривали два случая, привычно раскрывая знак модуля. Хотя внимательный анализ условия задания показывает, что на промежутке , на котором следует искать корни уравнения, выражение принимает только положительные значения [42].Анализ ответов участников экзамена показывает, что даже хорошо подготовленные учащиеся часто выполняют задания, используя "шаблонные" методы решения, которые приводят к громоздким преобразованиям и вычислениям.
Очевидно, что при выполнении приведенных выше заданий хорошо подготовленный выпускник должен был показать не только знание известных методов решения уравнений или преобразования выражений, но и умение проанализировать условие, соотнести данные и требования задания, вывести из условия различные следствия и т.п., то есть показать определенный уровень развития математического мышления.
Таким образом, при обучении хорошо успевающих учащихся нужно не только позаботиться об усвоении базовой составляющей курса алгебры и начал анализа, (усвоение изученных правил, формул, методов), но и о реализации одной из главных целей обучения математике – развитию мышления учащихся, в частности, математического мышления. Для реализации поставленной цели могут служить элективные курсы.
2.4. Применение свойств функций при решении уравнений и неравенств
1. Использование области определения функции. Если при рассмотрении уравнения (неравенства) выясняется, что обе его части определены на множестве M, состоящем из одного или нескольких чисел, то нет необходимости проводить какие-либо преобразования уравнения или неравенства. Достаточно проверить, является или нет каждое из этих чисел решением данного уравнения (неравенства).