Смекни!
smekni.com

Решение уравнений и неравенств с использованием свойств функций на элективном курсе по математике 2 (стр. 10 из 13)

Утверждение 2. Пусть имеется неравенство

. Если множество значений каждой из функций
принадлежит промежутку
, то неравенство равносильно системе
.

Пример 2. Решить неравенство

.

Так как для любого x справедливы неравенства

, то неравенство равносильно системе
, решением которой является
. Значит, неравенство имеет единственное решение
.

Утверждение 3. Пусть имеется неравенство

. Если множество значений каждой из функций
принадлежит промежутку
, то решениями неравенства являются все x из ОДЗ, за исключением тех x, которые являются решениями системы
.

Пример 3. Решить неравенство

ОДЗ неравенства

. Для нахождения решения неравенства нужно исключит из его ОДЗ все решения системы
. Решениями неравенства являются все x из множества
.

3. Решение задач. На доске написаны два варианта заданий. Учащиеся в течение 13-15 минут решают каждый свой вариант, затем в паре обмениваются тетрадями и проверяют решение соседа по парте и ставят баллы (по одному за каждое верное решение уравнения или неравенства). Учитель выписывает ответы на доске.

Вариант 1.

1)

;

2)

;

3)

.

Вариант 2.

1)

;

2)

;

3)

.

4. Подведение итогов занятия. Учитель выставляет баллы полученные учениками. 1 балл ставится ученику, объяснявшему домашнее задание.

5. Постановка домашнего задания

Решите уравнения и неравенство:

1)

;

2)

;

3)

;

4)

.

Занятие №8 Тема: «Использование свойств четности или нечетности и периодичности функций».

Цель: знакомство с новым приемом решения уравнений и неравенств – использование свойств четности, нечетности и периодичности функций.

Ход занятия:

1. Проверка домашнего задания. До начала занятия двое учащихся выписывают решение на доске. Остальные на занятии проверяют правильность решения.

2. Актуализация знаний.

‑Какие функции называются четными, какие нечетными?

‑Приведите примеры.

‑Исследовать функции на четность:

;
.

‑Сформулируйте определение периодической функции.

‑Какие из перечисленных функций являются периодическими, укажите их период:

,
,
.

Изучение нового материала.

Утверждение 1. Пусть дана функция

с областью существования X. Пусть дано число α ≠0. Тогда функция
имеет область существования X1, которая характеризуется свойством: для любого
число
, а для любого
число
. При этом, если функция
имеет период T, то функция
имеет период
.

Утверждение 2. Если функция F(x) – периодическая, то решение уравнения F(x)=0 или неравенства F(x)>0 (F(x)<0) достаточно найти на промежутке, равном по длине периоду функции, после чего записать общее решение.

Утверждение 3. Чтобы решить уравнение F(x)=0, где F(x) – четная или нечетная функция, достаточно найти положительные (или отрицательные) корни, после чего записать отрицательные (или положительные) корни, симметричные полученным. Для нечетной функции корнем будет x=0, если это значение входит в область определения F(x). Для четной функции значение x=0 проверяется непосредственной подстановкой в уравнение.

Утверждение 4. Чтобы решить неравенство F(x)>0 (F(x)<0), где F(x) – четная функция, достаточно найти решения для x≥0 (или x≤0). Если решением данного неравенства является промежуток (x1, x2), где x1, x2 – числа одного знака или одно из них равно нулю, то его решением будет и промежуток ( ‑ x2,x1).

Утверждение 5. Чтобы решить неравенство F(x)>0 (F(x)<0), F(x) – нечетная функция, достаточно найти его решения для x>0 (или x<0). Действительно, функция F(x) для любого x≥0 (x≤0) из области ее определения может находиться с нулем в одном из трех отношений: «равно», «больше», «меньше». Следовательно, если нам известно, при каких значениях x F(x)≥0 (F(x)≤0), то нам будет известно, при каких значениях x F(x)>0 (F(x)<0) (оставшиеся значения x из области определения). Но если нам известны промежутки знакопостоянства функции F(x) для x>0 (или x<0), то легко записать промежутки знакопостоянства и для x<0 (x>0).

Решение задач. Список заданий написан на доске. Первое и второе учитель подробно разбирает. Остальные учащиеся самостоятельно решают в тетради и по желанию демонстрируют свое решение на доске.

1) Решить уравнение

Период, входящих в уравнение функций Т=200p. Возведем обе части в квадрат и получим

;
. Проверим корни в пределах периода:

Решением уравнения является

.

2) Решить уравнение

;

Заметим, что в обеих частях уравнения стоят четные функции, поэтому решим данное уравнение с использованием свойств четной функции. С учетом сказанного выше для четной функции, достаточно найти решения для x≥0. Но x=0 не есть корень уравнения. Рассмотрим два промежутка (0, 2], (2, ∞). На промежутке (0, 2] имеем

;
; x=
. На промежутке (2, ∞) имеем
;
; 3x=2x; x=0. Но так как x=0 не является корнем уравнения, то для x>0 данное уравнение имеет корень x=
.
Но тогда x=
также является корнем уравнения.

3)

;

4)

.

3. Подведение итогов занятия.

Учитель выставляет баллы учащимся по одному баллу за решение домашнего задания и за решение у доски.