По поводу этого определения надо прежде всего заметить, что так понимаемая непрерывность есть локальное (местное) свойство функции, т. е. такое свойство, которым функция может обладать в одной точке и не обладать в другой; так, функция (3) разрывна (т. е. не непрерывна) при х=0 и непрерывна при любом другом значении х; это - очень важное обстоятельство, которое никогда не надо упускать из вида.
Далее, мы называем, функцию непрерывной в данном отрезке [а,b], если она в вышеприведённом смысле непрерывна в каждой точке этого отрезка; при этом в точке а требуется лишь непрерывность справа, т, е. соотношение f(х)=f(а), а в точке b - непрерывность слева, определяемая аналогичным соотношением, которое Вы напишете сами (если имеется в виду открытый отрезок (а, b), то, разумеется, в точках а и b от функции ничего не требуется). Заметим кстати, что математики давно уже пользуются очень удобным обозначением
f(a)=f(a+0), ,
с помощью которого определение непрерывности функции f(x) в точке а можно записать посредством весьма простого соотношения
f(a+0)=f(a-0)=f(a);
это обозначение не может привести ни к каким смешениям, если только помнить, что f(а+0) и f(а-0) представляют собой не значения функции f(х) в каких-либо точках, а пределы таких значений при некоторых определённых изменениях величины х.
п.1.4.6. периодичность
Функция у=f(х)называется периодической, если существует такое число Т>0, что для, каждого значения х из области определения этой функции значения х+Т и х-Т также принадлежат области определения и выполняется равенство f(x+Т)=f(x). При этом число Т называется периодом функции y=f(x). Из этого определения следует, что
f(х+2T)=f[(x+T)+T]=f(x+T)=f(x),
f(х+3T)=f[(x+2T)+T]=f(x+2T)=f(x),
f(x)=f[(x-T)+T]=f(x-T)
и т. д. Отсюда, используя метод математической индукции,
Рис. 12
получаем, что для любого п = 0, ±1, ±2, …, выполняется равенство f(х+пТ)=f(х), Таким образом, каждое из чисел nТ (п=1,2,3,…) также является периодом функции f(х).
Мы предполагаем, что читатель хорошо знаком с периодическими функциями sinx, соsx и tgх.
Пример 16. Доказать, что функция
является периодической с периодом 2p.Решение. Область определения рассматриваемой Функции получается выбрасыванием из числовой оси тех точек, в которых знаменатель обращается в нуль, т. е. точек -
+2kp (k-целое). Отсюда видно, что если точка х принадлежит области определения рассматриваемой функции f(x), то точки x+2p и x-2p также принадлежат этой области определения. Остается проверить, что выполнено равенство f(x+2p)=f(x). Мы имеемf(x+2p)=
Пример 17. Доказать, что функция f(х)=|sinх|является периодической с периодом p.
Решение. Область определения функции f(х)=|sinх| вся числовая ось. Поэтому для любого k точки х+pи х-pпринадлежат области определения. Остается проверить, что выполнено равенство f(х+p)=f(х). Мы имеем f(х+p)=|sin(x+p)|=|-sinx|=|sinx|=f(x).
Глава II. Изучение основных элементарных функций в школьном курсе математики.
В результате изучения курса математики учащиеся должны:
- понимать, что функция – это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, что конкретные типы функций (прямая и обратная пропорциональности, линейная, квадратичная функции) описывают большое разнообразие реальных зависимостей;
- правильно употреблять функциональную терминологию (значение функции, аргумент, график функции, область определения, возрастание и др.), понимать ее в тексте, в речи учителя, в формулировке задач;
- находить значения функции, заданных формулой, таблицей, графиком; решать обратную задачу;
- находить по графику функции промежутки возрастания и убывания функции, промежутки знакопостоянства, наибольшее и наименьшее значения;
- строить графики линейной функции, прямой и обратной пропорциональности, квадратичной функции;
- интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы.
Школьный курс изучения функции строится по аналогии с развитием в истории понятия функции.
§2.1. Линейная функция.
Линейной функцией называется функция, которую можно задать формулой вида y=kx+b, где х – независимая переменная, kи b – некоторые числа. Такое определение дает Ю.Н. Макарычев и др. в своем учебнике по алгебре в 7 классе, в параграфе 13.
И только после этого в следующем параграфе дается определение прямой пропорциональности. Перед тем как ввести определение предлагается задача об объеме железного бруска. Зависимость массы железного бруска от его объема является примером функции, которая задается формулой вида у=kх. И только затем дается определение. Обращается внимание на то, что прямая пропорциональность является частным случаем линейной функции, так как формула у=kх получается из формулы y=kx+bпри b=0 и для того, чтобы построить график прямой пропорциональности достаточно отметить какую-либо точку графика, отличную от начала координат, и провести через эту точку и начало координат прямую.
Целый параграф в данном учебнике отводится на изучение взаимного расположения графиков линейных функций. Графики двух линейных функций, заданных формулами вида y=kx+b, пересекаются, если коэффициенты при х различны, и параллельны, если коэффициенты при х одинаковы.
В отличие от учебника Ю.Н. Макарычева и др, в учебнике Ш. А. Алимова и др. понятие прямой пропорциональности вводится раньше линейной функции. Школьникам предлагается найти площадь треугольника, основание которого равно 3, а высота х. пусть искомая площадь будет у. Тогда ответ можно записать у=3х. если же основание треугольника равно k, тогда зависимость между высотой х и площадью у выражается формулой у=kх. Все первоначальные сведения о линейной функции вводятся на примере его частного случая у=kх. В отличии от Ю.Н. Макарычева и др, школьников уже в 7 классе знакомят с понятием обратной пропорциональности. Как пример приводится зависимость скорости от времени. Говорится о том, что плотность вещества при постоянной массе обратно пропорциональна его объему.
И только в следующем параграфе дается определение линейной функции в общем виде. Школьникам объясняется, что график функции y=kx+bполучается сдвигом графика функции y=kx на b единиц вдоль оси ординат. Графики данных функций параллельны.
В учебнике А.Г. Мордковича понятие «Линейная функция» вводится совсем иначе. Поскольку определение функции будет дано только в 9 классе, изменяется традиционная методика изложения темы «Линейная функция» - первой темы, связанной с понятием функции. Первой (в §28) изучается тема «Линейные уравнения с двумя переменными». Рассматриваются задания следующего типа:
- найти какое либо решение уравнения 2х+3у=5;
- найти решение уравнения 2х+3у=5, зная, что х=2, зная что у=0, и т.п.;
- построить график уравнения х+у=3 и с помощью графика узнать несколько решений этого уравнения.
Далее внимание учащихся обращается на то, что график линейного уравнения с двумя переменными с двумя переменными проще строить, если уравнение преобразовано к виду y=kx+b, для которого употребляется термин «линейная функция». Позднее им сообщается, что существуют и другие функции, например у=х2 (ее изучению посвящена глава 7).
В учебнике вводятся теоремы без доказательства, например:
Теорема 2. Графиком линейной функции y=kx+bявляется прямая.
Теорема 4. Прямая, служащая графиком линейной функции y=kx+b, параллельна прямой, служащей графиком прямой пропорциональности y=kx.
§2.2. Квадратичная функция.
С квадратичной функцией учащиеся в учебниках Ш.А. Алимова впервые сталкиваются в 8 классе.
В §35 учащиеся знакомятся с определением квадратичной функции. Даются примеры из жизни, где имеет место быть квадратичная функция. Например, зависимость площади квадрата от его стороны является примером функции y=x2.