п.1.4.4. точки экстремума
Рассмотрим график непрерывной функции y=f(x), изображенной на рисунке. Значение функции в точке x1 будет больше значений функции во всех соседних точках как слева, так и справа от x1. В этом случае говорят, что функция имеет в точке x1максимум. В точке x3 функция, очевидно, также имеет максимум. Если рассмотреть точку x2, то в ней значение функции меньше всех соседних значений. В этом случае говорят, что функция имеет в точке x2 минимум. Аналогично для точки x4.
Функция y=f(x) в точке x0 имеет максимум, если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x0, т.е. если существует такая окрестность точки x0, что для всех x≠x0, принадлежащих этой окрестности, имеет место неравенство f(x)<f(x0).
Функция y=f(x) имеет минимум в точке x0, если существует такая окрестность точки x0, что для всех x≠x0, принадлежащих этой окрестности, имеет место неравенство f(x)>f(x0).
Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.
Обратим внимание на то, что функция, определенная на отрезке, может достигать максимума и минимума только в точках, заключенных внутри рассматриваемого отрезка.
Отмети, что если функция имеет в точке максимум, то это не означает, что в этой точке функция имеет наибольшее значение во всей области определения. На рисунке, рассмотренном выше, функция в точке x1 имеет максимум, хотя есть точки, в которых значения функции больше, чем в точке x1. В частности, f(x1)<f(x4) т.е. минимум функции больше максимума. Из определения максимума следует только, что это самое большое значение функции в точках, достаточно близких к точке максимума.
Теорема. (Необходимое условие существования экстремума.) Если дифференцируемая функция y=f(x) имеет в точке x=x0экстремум, то ее производная в этой точке обращается в нуль.
Доказательство. Пусть для определенности в точке x0 функция имеет максимум. Тогда при достаточно малых приращениях Δx имеем f(x0+Δx)<f(x0), т.е. f(x0+Dx)-f(x0)<0. Но тогда
при Dx<0, при Dx>0.Переходя в этих неравенствах к пределу при Δx→0 и учитывая, что производная f '(x0) существует, а следовательно предел, стоящий слева, не зависит от того как Δx→0, получаем: при Δx→0–0 f '(x0)≥0 а при Δx→0+0
f '(x0)≤0. Так как f '(x0) определяет число, то эти два неравенства совместны только в том случае, когда f '(x0)=0.
Доказанная теорема утверждает, что точки максимума и минимума могут находиться только среди тех значений аргумента, при которых производная обращается в нуль.Мы рассмотрели случай, когда функция во всех точках некоторого отрезка имеет производнуюФункция может иметь экстремум лишь в двух случаях: 1) в точках, где производная существует и равна нулю; 2) в точке, где производная не существует.Однако, если в некоторой точке x0 мы знаем, что f '(x0)=0, то отсюда нельзя делать вывод, что в точке x0 функция имеет экстремум.Значения аргумента из области определения функции, при которых производная функции обращается в нуль или не существует, называются критическими точками. |
Из всего вышесказанного следует, что точки экстремума функции находятся среди критических точек, и, однако, не всякая критическая точка является точкой экстремума. Поэтому, чтобы найти экстремум функции, нужно найти все критические точки функции, а затем каждую из этих точек исследовать отдельно на максимум и минимум. Для этого служит следующая теорема.
Теорема. (Достаточное условие существования экстремума.) Пусть функция непрерывна на некотором интервале, содержащем критическую точку x0, и дифференцируема во всех точках этого интервала (кроме самой точки x0). Если при переходе слева направо через эту точку производная меняет знак с плюса на минус, то в точке x=x0функция имеет максимум. Если же при переходе через x0 слева направо производная меняет знак с минуса на плюс, то функция имеет в этой точке минимум.
Таким образом, если
a. f '(x)>0 при x<x0и f '(x)<0 при x> x0, то x0 – точка максимума;
b. f '(x)<0 при x<x0 и f '(x)>0 при x> x0, то x0 – точка минимума.
Доказательство. Предположим сначала, что при переходе через x0 производная меняет знак с плюса на минус, т.е. при всех x, близких к точке x0 f '(x)>0 для x< x0, f '(x)<0для x> x0. Применим теорему Лагранжа к разности f(x)-f(x0) = f '(c)(x-x0), где c лежит между x и x0.
1. Пусть x <x0. Тогда c<x0 и f '(c)>0. Поэтому f '(c)(x-x0)<0 и, следовательно,
f(x) - f(x0)<0,т.е. f(x)< f(x0).
2. Пусть x > x0. Тогда c> x0 и f '(c)<0. Значит f '(c)(x- x0)<0. Поэтому f(x) - f(x0)<0, т.е. f(x) < f(x0).
Таким образом, для всех значений x достаточно близких к x0 f(x)<f(x0). А это значит, что в точке x0 функция имеет максимум.
Аналогично доказывается вторая часть теоремы о минимуме.
Проиллюстрируем смысл этой теоремы на рисунке. Пусть
f '(x1)=0 и для любых x, достаточно близких к x1, выполняются неравенства
f '(x)<0 при x< x1, f '(x)>0 при x> x1.
Тогда слева от точки x1 функция возрастает, а справа убывает, следовательно, при x=x1 функция переходит от возрастания к убыванию, то есть имеет максимум.
Аналогично можно рассматривать точки x2 и x3.
Правило исследования функции y=f(x) на экстремум
1. Найти область определения функции f(x).
2. Найти первую производную функции f '(x).
3. Определить критические точки, для этого:
a. найти действительные корни уравнения f '(x)=0;
b. найти все значения x при которых производная f '(x) не существует.
4. Определить знак производной слева и справа от критической точки. Так как знак производной остается постоянным между двумя критическими точками, то достаточно определить знак производной в какой-либо одной точке слева и в одной точке справа от критической точки.
5. Вычислить значение функции в точках экстремума.
Наибольшее и наименьшее значения функции на отрезке.
Наибольшим значением функции на отрезке называется самое большое из всех ее значений на этом отрезке, а наименьшим – самое маленькое из всех ее значений.
Рассмотрим функцию y=f(x) непрерывную на отрезке [a, b]. Как известно, такая функция достигает своего наибольшего и наименьшего значений, либо на границе отрезка, либо внутри него. Если наибольшее или наименьшее значение функции достигается во внутренней точке отрезка, то это значение является максимумом или минимумом функции, то есть достигается в критических точках.
Таким образом, получаем следующее правило нахождения наибольшего и наименьшего значений функции на отрезке[a, b]:
1. Найти все критические точки функции в интервале (a, b) и вычислить значения функции в этих точках.
2. Вычислить значения функции на концах отрезка при x=a, x=b.
3. Из всех полученных значений выбрать наибольшее и наименьшее.
п.1.4.5. непрерывность
Приступая к изучению функциональных зависимостей, мы должны, конечно, прежде всего с помощью целесообразной классификации внести хотя бы некоторый порядок в предстоящий нам многообразный мир. Первым таким классифицирующим и организующим принципом служит обычно (и с полным основанием) разделение всех функций на непрерывные и разрывные, причём математический анализ фактически имеет дело почти исключительно с непрерывными функциями, лишь в сравнительно редких случаях привлекая к рассмотрению и простейшие из разрывных. Непрерывные функции обладают целым рядом особых свойств, которых лишены, вообще говоря, функции разрывные; благодаря этим свойствам исследование и применение непрерывных функций весьма значительно облегчаются, так что изучение этих свойств становится для анализа чрезвычайно важным делом.
Мы говорим, что функция у=f(х) непрерывна прих=а (или, короче, в точке а), если f(х)=f(а), или, что в силу определения понятия предела равносильно тому же, если для любой окрестности V числа f(а) найдётся такая окрестность U числа а, что для любого хÎU мы имеем f(х)ÎV. Таким образом, для непрерывности функции в точке а требуется, во-первых, существование предела f(х) и, во-вторых, совпадение этого предела с тем значением, которое функция принимает при х=а. Само собой разумеется, что второе из первого ещё не вытекает, как показывает пример функции