После построения формулируются основные свойства функции y=cosx.
В §20 вводится функция y=sinx. Для построения функции используют формулу:
.Эта формула показывает, что график функции y=sinxможно получить сдвигом графика функции y=cosx вдоль оси абсцисс вправо на
Затем формулируются свойства функции y=sinx.
В §21 изучается функция y=tgx.
Построение графика функции тангенс, как и косинус, начинается с исследования. Сначала график строится на промежутке
, а затем распространяется на всю числовую прямую. Для этого доказывается, что функция y=tgxвозрастает на промежутке . Доказанное здесь свойство позволяет сделать вывод о возможности построения графика функции на всю числовую прямую.После чего формулируются свойства функции y=tgx.
В учебнике Колмогорова все тригонометрические функции вводятся в одном параграфе, который начинается с основных тригонометрических определений. Данные определения не являются новыми для учеников - это повторение материала 9 класса. После этого происходит построение графика функции y=sinx по точкам с использованием свойств периодичности и единичной окружности.
По графику демонстрируются свойства данной функции: ее область определения, область значения, наибольшее и наименьшее значения, нули функции, промежутки постоянных знаков функции. Аналогично рассматриваются свойства функции y=cosx и y=tgxи на графиках этих функций демонстрируются их свойства.
В 9 классе в учебнике Мордковича предлагаются элементы теории тригонометрических функций. Эта глава рассматривается, как дополнительный материал. Весь этот материал повторен и расширен в курсе алгебры и начала анализа в 10-11 классе.
В начале 10 класса учащиеся подробно изучают данный материал. На изучение данного материала отводится 15 параграфов, а по времени – 18 часов.
В §1 и в §2 учащиеся знакомятся с числовой окружностью и с определением тригонометрических функций. Автор выделяет числовую окружность в качестве самостоятельного объекта изучения. Школьникам напоминается материал о вычислении длин дуг окружностей.
Числовая окружность на плоскости рассматривается в §3.
Для изучения числовой окружности автор предлагает игровые моменты.
Изучение самих функций начинается только с 9 параграфа. Перед этим вводятся определения синуса, косинуса , тангенса и котангенса. Первой функцией предлагается y=sinx. Параграф начинается с формулирования свойств функции. После чего предлагается построить график данной функции на отрезке [0; p]. Затем добавляют к построенному графику симметричную ему относительно начала координат линию. Получили график на отрезке [-p; p]. Далее предлагается построить график функции на отрезке [p; 3p]. В результате получили то же самое, что и на отрезке [-p; p].
В следующем параграфе предлагается к рассмотрению функцию y=cosx. Ее график получается из графика функции y=sinx сдвигом на
в лево. После чего рассматриваются свойства функции.В §15 учащимся предлагается функция y=tgxи y=сtgx. Отмечаются их свойства. Графики строятся так же как в учебниках Алимова.
Глава III. Вспомогательные приемы построения усложненных графиков.
Известно, что методы высшей математики позволяют строить любой график. Однако знаний тех элементов высшей математики, которые даются в средней школе, для этой цели недостаточно. С другой стороны, большое количество графиков, иногда весьма интересных может быть построено средствами исключительно элементарной математики. Наиболее трудные из этих графиков требуют для своего построения хорошего знания многих разделов элементарной математики, а подчас и остроумного применения этих знаний. Построение графиков средствами элементарной математики может служить материалом для закрепления и усовершенствования учениками и абитуриентами своих знаний по многим важным разделам элементарной математики.
§3.1. Параллельный перенос.
п 3.1.1 Сдвиг оси х-ов.
График этой функции можно построить, пользуясь общими приемами:
1) область существования: (-¥;¥), т.е. вся числовая ось;
2) область изменения функции – полуоткрытый интервал 1£у<¥;
3) функция четная;
4) при х=0 у=1, т.е. кривая пересекает ось у-ов в точке (0;1); в этой точке функция имеет минимум, так как х2=0, откуда у³1;
Рис.13. Рис.14.
5) контрольная точка: при х=2 у=4+1=5; точка (2; 5).
По этим данным график функции построен на рис. 13.
Тот же график можно построить проще, воспользовавшись уже известным нам графиком функции у=х2. Для этого наносим штриховой линией график функции у=х2 (рис. 14), назовем его исходным графиком.
Сравнивая графики функций у=х2+1 и у=х2, видим, что ординаты у графика заданной функции на 1 больше ординат исходного графика. Следовательно, исходный график надо перенести на 1 вверх, как это и сделано на рисунке 14.
График функции у=х2+1 можно построить еще проще, если воспользоваться тем же исходным графиком (y=x2), но вместо перенесения всей кривой вверх на 1 перенести ось х-овна ту же 1 вниз, как показано на рисунке 15. Тем самым относительно новой оси х-ов все ординаты