Задача сводится к разбиению отрезка AB на два таких отрезка АС и СВ, чтобы сумма площадей двух прямоугольников ACLK и CBRQ была равна площади прямоугольника АМРВ.
На луче BB1 отметим точку Т (ВТ=АК) изображающую 9 часов, на луче АА1 отметим точку S (AS=BR) изображающую 4 часа 48 минут. Проведем отрезок ST. Точка N пересечения отрезков ST и МР определяет размеры MN и NP оснований искомых прямоугольников. Найденные прямоугольники ACLK и CBRQравновелики прямоугольнику АМРВ.
Для того чтобы получить ответ задачи достаточно провести прямую AN до пересечения в точке D с лучом BB1, и прямую BN до пересечения в точке Е с лучом АА1. Длины отрезков будут искомыми величинами. Ответ 12 и 15.
Если построения выполнить на миллиметровой бумаге, взяв 1 мм за час, то данный ответ можно считать обоснованным. Если чертеж выполняется от руки не на миллиметровой бумаге и без масштаба, то для получения ответа требовались бы вычисления использующие подобие трех пар треугольников: SMN и TPN, ADB и ANC, BEA и BNC. Откуда MN:MP = MS:PT. Но
MS=AM – AS =6 ч 40 мин – 4ч 48 мин = 112 мин,
PT=BT – PB = 9ч – 6ч 40 мин =140 мин.
Следовательно, MN:MP = 4:5. Далее BD:CN = AB:AC = MN:MP = 9:4. Отсюда BD =
= 6 ч 40 мин =15 ч. Аналогично, АЕ = 12 часов.Во всяком случае, решение мы получаем благодаря решению геометрической задачи.
Решение задач с помощью изложенного метода опирается на достаточно сложный геометрический материал. Но методика обучения данному виду геометрического моделирования задач не включает его в себя. Сама методика предполагает формирование у учащихся представлений о связи двумерных диаграмм с величинами, которые можно представить в виде произведения двух других (например, путь, скорость и время), и умений работать с диаграммой. Все это формируется в процессе моделирования уже разобранных (решенных алгебраическим методом) задач с опорой на соответствующий материал о линейных диаграммах. Весь геометрический материал необходимый для работы с диаграммами представляет собой приведенную выше теорему, и три построения, которые обосновываются с помощью данной теоремы. Например, в задаче 3 при нахождении двух прямоугольников равновеликих данному используется такое построение. Весь геометрический материал можно изучить в курсе геометрии в теме «Площади». Задачи для обучения моделированию с помощью двумерных диаграмм нужно подобрать так, чтобы среди них были модели, использующие все построения. В начале задачи должны быть простыми, не использующими построения, например, задача 1 и усложнятся в последствии.
С помощью двумерных диаграмм можно составить разные уравнения одной и той же задачи, это помогает найти более рациональный путь решения. Кроме того, она позволяет наглядным образом обосновывать полученные уравнения, позволяет наглядно представить процесс, описанный в задаче.
Как мы видели на примере задачи 3, её, при выполнении соответствующих требований, можно решить благодаря только геометрическим построениям. Существует класс задач на совместную работу, которые можно решить благодаря только построениям в системе координат. Приведем пример одной из таких задач.
Задача 4. Бассейн заполняется водой через одну трубу за 4 часа, а через другую вода может вытечь за 6 часов. За сколько времени наполнится бассейн при одновременном действии обоих труб?
Рассмотрим прямоугольную систему координат
(рис. 4). Пусть отрезок ODизображает объем бассейна, тогда отрезок ОА является графиком наполнения бассейна через первую трубу, отрезок ОВ графиком вытекания воды из бассейна через вторую трубу. Графиками являются отрезки, так как объем воды, протекающий через трубу, прямо пропорционален времени. За 4 часа первая труба одна наполнит весь бассейн. Через вторую трубу за это время вытечет воды объемом, изображением которого служит отрезок МК. Объем воды, оставшейся в бассейне изображается отрезком АК=АМ – МК. Отложим отрезок МР = АК, проведем через точки О и Р прямую до пересечения С с прямой, изображающей объем. Тогда ОС является графиком наполнения бассейна при одновременном действии двух труб. Из рисунка видно, что через 12 часов бассейн наполнится. Условия, при которых мы можем принимать результат решения задачи без дополнительной проверки, описаны ниже и требуют отдельного рассмотрения с учениками в процессе обучения решению задач подобными методами.То, что графиками указанных зависимостей будут отрезки обоснованно в ходе решения задачи. Принцип построения данных графиков также прост, для этого нужно соединить начало координат и точку, которая соответствует времени выполнения работы. Основной вопрос как построить результирующий график и почему он соответствует верному результату. Ответ на этот вопрос раскрывает смысл метода решения задач данным способом. Для приведенной выше задачи нужно построить отрезок МР, который равен объему совместной работы труб, в то время как первая труба заполнит объем соответствующий отрезку АК, через вторую трубу вытечет объем соответствующий МК. По построению МР=АМ – МК. Значит график совместной работы будет проходить через точку Р так как графиком является отрезок проходящий через начало координат, то теперь мы можем однозначно его построить.
Для того, чтобы решать задачи с помощью данного метода, нужно уметь еще строить результирующий график совместной работы. Работа может выполняться ее участниками в различном направлении (как «трубы» в предыдущей задачи) или в одном направлении.
Приведем пример задачи, где работа выполняется в одном направлении.
Задача 5.Ванна заполняется холодной водой за 6 минут 40 секунд, горячей – за 8 минут. Кроме того, если из полной ванны вынуть пробку, вода вытечет за 13 минут 20 секунд. Сколько времени понадобится, чтобы наполнить ванну полностью, при условии, что открыты оба крана, но ванна не заткнута пробкой?
Пусть отрезок OD(рис. 5) изображает весь объем, тогда отрезок OC график работы крана с холодной водой, отрезок DB – с горячей. Пусть M точка пересечения этих графиков, из рисунка видно, что к моменту времени соответствующему точке M, оба крана, работая совместно, выполнят весь объем работы. Тогда проведем отрезок BK через точку M перпендикулярно оси абсцисс, так как к моменту времени B (или К) весь объем работы будет выполнен, то отрезок OB (или DK) будет графиком совместной работы. OP график, соответствующий работе по вытеканию воды. Из графиков OB и OP, с помощью метода описанного в предыдущей задаче получаем результирующий график. Из рисунка видно, что ванна заполнится через 5 минут.