А. Н. Леонтьев одним из первых в мировой педагогике и психологии поставил вопрос о том, что совершенно недостаточно действовать с помощью наглядных пособий на органы чувств. Необходимы встречные, активные действия учеников. Только в этом случае, воздействующие на органы чувств наглядные пособия трансформируются в психические образы. То есть воспринимают не органы чувств человека, а человек с помощью своих органов чувств. В современном педагогическом словаре наглядность определяется так: свойство, выражающее степень доступности и понятности психических образов объектов познания для познающего субъекта; один из принципов обучения.[19]
Применение наглядности при обучении математике имеет корни в теории познания и согласуется с методикой математики. Условно можно выделить три этапа познания: восприятие, представление и абстрактное мышление. Процесс познания также условно можно разбить на две ступени: чувственную (восприятие и представление) и логическую (переход от представления к понятию с помощью обобщения и абстрагирования). Чувственная ступень соответствует первому этапу пути познания, и роль наглядности на этом этапе достаточно важна. Наглядность используется для получения знаний о внешних свойствах математических объектов, о взаимосвязи объектов, об их сходстве и различии. Роль наглядности на третьем этапе познания заключается в том, что она дает возможность показать учащимся глубинные связи между свойствами математических объектов, создать правильный образ.
Роль и место применения наглядных пособий в процессе обучения математике, а также цель их использования на уроке зависит в первую очередь от содержания предмета и имеющихся у учащихся знаний. Школа должна развивать у учащихся определенный круг представлений, сообщить им необходимый запас знаний и навыков, а также научить применять полученные знания на практике. Необходимо создавать на уроках обстановку, в которой ученики заинтересовались бы математикой, вызывать у учащихся стремление к изучению математики. Использование наглядности на уроках облегчает восприятие и осознание учащимися учебного материала, помогает развить интерес к математике, а также теснее связать теоретические сведения с практикой. Метод наглядного обучения математике играет значительную роль в трудной борьбе с формализмом школьных знаний и их оторванностью от жизненной практики.
Психологи считают, что для того чтобы правильно подобрать и использовать наглядность на уроке необходимо определить действия учащихся по отношению к средствам наглядности, а также действия, которые должны будут выполнить учащиеся, чтобы овладеть материалом сознательно.
Таким образом, использование наглядности позволяет с разных сторон подходить к изучению какого-либо вопроса, задерживает, сосредоточивает внимание учеников (произвольное и непроизвольное), повышает интерес к изучаемому предмету, облегчает усвоение существа вопроса и приучает к обобщению и приложению знаний.
Поэтому при подготовке к уроку учитель должен тщательно продумать, какие средства наглядности будут использоваться на уроке, а также методику их использования. Также необходимо выяснить, на каком этапе урока следует показать модель, таблицу, как учащимся оформить ее в тетради, не рекомендовать ли сделать самодельную модель на ту же тему.
Первоначально понятие наглядности относилось лишь к зрительным восприятиям предмета или явления. Затем оно выросло в понятие чувственного восприятия вообще (слух, зрение, осязание). Позднее к наглядному методу обучения были отнесены наблюдение, опыт и практические приложения математики, а учебные модели, таблицы, картины, схемы и т.п. стали считать наглядными пособиями.
Итак, наглядность – свойство, выражающее степень доступности и понятности психических образов объектов познания для познающего субъекта; один из принципов обучения. В процессе создания образа восприятия объекта наряду с ощущением участвуют память и мышление.
Образ воспринимаемого объекта является наглядным только тогда, когда человек анализирует и осмысливает объект, соотносит его с уже имеющимися у него знаниями.
Наглядный образ возникает не сам по себе, а в результате активной познавательной деятельности человека. Образы представления существенно отличаются от образов восприятия. По содержанию они богаче образов восприятия, но у разных людей они различны по отчётливости, яркости, устойчивости, полноте.
Степень наглядных образов представления может быть различной в зависимости от индивидуальных особенностей человека, от уровня развития его познавательных способностей, от его знаний, а также от степени наглядных исходных образов восприятия.
Существуют также образы воображения – образы таких объектов, которые человек никогда непосредственно не воспринимал. Однако они составлены, сконструированы из знакомых и понятных ему элементов образов восприятия и представления.
Благодаря образам воображения человек способен вначале представить себе продукт своего труда, и лишь затем приступить к его созданию, представить различные варианты своих действий.
Чувственное познание даёт человеку первичную информацию об объектах в виде их наглядных представлений.
Мышление перерабатывает эти представления, выделяет существенные свойства и отношения между разными объектами и тем самым помогает создавать более обобщённые, более глубокие по содержанию психические образы познаваемых объектов.
Психологами установлено, что наглядность необходима для обеспечения целого ряда дидактических функций: принятия учащимися учебной задачи, мотивирования ее, «настройки» учащегося на процесс обучения, обеспечения школьнику общей ориентировки для его будущей деятельности.
В методике преподавания математики выделяют следующие функции наглядности.
1.Познавательная функция. Методической целью реализации этой функции является формирование познавательного образа изучаемого объекта. Это формирование происходит постепенно от простого к сложному, при этом мысль учащегося направляется по кратчайшим и наиболее доступным путям к целостному восприятию объекта. Ценность этой функции состоит в предоставлении учащимся кратчайшего и доступного пути осмысления изучаемого материала.
2. Функция управления деятельностью учащегося.При реализации этой функции средства и приемы наглядности участвуют в следующих действиях:
а) ориентировочных. Например, построение чертежа, соответствующего рассматриваемому условию, или внесение в данный чертеж дополнительных элементов;
б) контролирующих, которые направлены на обнаружение ошибок при сравнении чертежа (схемы, графика), выполненного учащимся, с помещенными в учебнике, или в выяснении свойств, которые должен сохранить объект при тех или иных преобразованиях;
в) коммуникационных, которые отвечают той стадии реализации функции управления деятельностью учащегося, которая соответствует исследованию полученных им результатов. Выполняя эти действия, учащийся по собственному опыту объясняет другим или самому себе суть изучаемого явления или факта по построенной модели.
3. Интерпретационная функция. Суть этой функции заключается в том, что один и тот же объект можно выразить с помощью разных знаков и моделей. Например, окружность можно задать с помощью пары (центр и радиус), уравнением относительно осей координат, с помощью рисунка или чертежа.
Однако в одних случаях удобно воспользоваться ее аналитическим выражением, в других – геометрической моделью. Рассмотрение каждой из этих моделей, которая в определенных условиях может служить средством наглядности, является ее интерпретацией. Чем значимей объект, тем желательней дать большее количество интерпретаций, раскрывающих познавательный образ с разных сторон.
4. Эстетическая функция. Эстетика – красота. Она может быть постигаемая органами чувств, то есть формальная красота, и интеллектуальная, доступная только разуму. В математическом доказательстве должны быть соразмерны логическая и наглядная части. Так, благодаря простой наглядной модели, становится ясной суть доказательства, а логика уточняет лишь некоторые детали доказательства.
Для любого математического объекта существует возможность его «визуализации», то есть создания его наглядного образа. Красивые формулы, задачи, графики функций, многоугольники и т. п. являются объектами с эстетическими свойствами во внешнем облике.
Различные рисунки, чертежи, схемы, таблицы являются эстетическими объектами. Они отображают логику процессов, поэтому углубляют познание, способствуют раскрытию внутренней красоты математики.
К методическим функциям наглядности можно отнести также функцию обеспечения целенаправленного внимания учащегося, функцию запоминания при повторении учащимися учебного материала, функцию использования прикладной направленности и др.
А. Н. Леонтьев выделяет также психологическую функцию, включенную в процесс обучения с использованием наглядности. Она состоит в том, что наглядный материал (пособия) служит как бы внешней опорой внутренних действий, которые совершает ребенок под руководством учителя в процессе овладения знаниями.
Реализуя различные функции наглядности, можно способствовать развитию наиболее плодотворного мышления учащегося, так как его внимание легко и своевременно переключается со средств наглядности на полученную с их помощью информацию об объекте и обратно. Такое переключение сводит к минимуму отвлечение умственных усилий учащихся от предмета их деятельности.