Смекни!
smekni.com

Методика использования визуальных моделей в обучении школьников решению математических задач (стр. 12 из 13)

Так как выяснение этого вопроса осуществлялось на графике проходящим через начало координат, то учащимся было рассказано, что данный рисунок подразумевает, что путь начал отсчитываться одновременно с началом отсчета времени и задан вопрос: «Что означает параллельный перенос данного графика?». Был дан достаточно полный ответ, но он копировал структуру построения предложения для рассмотренного случая. Пришлось перефразировать данное предложение, и учащимся был дан следующий ответ с опорой на соответствующее изображение: «Данный график предполагает, что на момент отсчета времени движущийся объект уже прошел какой-то путь». Далее с опорой на геометрическую трактовку было установлено, что этот пройденный путь соответствует свободному коэффициенту аналитического задания линейной функции.

Таким образом была установлена связь между равномерным движением и линейной функцией и раскрыта связь между геометрической и физической трактовкой линейной функции.

В итоге учащиеся знали, что всякому равномерному прямолинейному движению соответствует линейная функция. Кроме того, было установлено обратное, что всякая линейная функция может быть интерпретирована как равномерное движение, причем скорость этого движения равна тангенсу угла наклона графика к положительному направлению оси абсцисс или коэффициенту в аналитическом задании функции, а свободный член равен пройденному на момент начала отсчета пути.

Из всего сказанного выше непосредственно следовали методы задания линейной функции по словесному описанию движения. Было рассказано, что если нет дополнительных условий, то мы предполагаем, что путь отсчитывается одновременно с отсчетом времени, т. е. график движения проходит через начало координат. Значит, если нам дана точка координатной плоскости, где одно значение – время, а другое – путь, то для того, чтобы построить график достаточно через эти точки провести прямую, аналитическое задание которой опирается на геометрические соображения, изложенные выше. Если мы имеем скорость движения, то график – прямая с соответствующим тангенсом угла наклона, проходящая через начало координат. Если в условии оговорено дополнительно, что на момент отсчета времени тело прошло какой-то путь, то в предыдущих методах изменяется только то, что график проходит через начало координат. При рассмотрении этого вопроса закладывается умение выбирать точку отсчета. Кроме того, было сформулировано правило выбора положительного направления пути: «если в условии есть два объекта движущихся навстречу друг другу, и мы выбрали движение одного в положительном направлении, т. е. функция его пути является возрастающей, то другой движется в отрицательном направлении, значит, и скорость его имеет отрицательное значение, откуда следует, что угол наклона графика будет больше прямого (установлено при рассмотрении тангенса).

Далее все эти правила рассмотрены на конкретных примерах и учениками самостоятельно решены задачи по построению графиков.

Задачи содержали конкретные числовые значения, задающие линейные функции. Варьировались только условия, которым соответствовали изменения графиков, отрабатывалось умение выбирать положительное и отрицательное направление движения.

Ученики справились со всеми заданиями, они показались им легкими. Но основной целью урока было показать, что всякое равномерное прямолинейное движение имеет свою графическую модель, геометрия которой описывает все величины, и научить строить эту модель для конкретных данных. Цель была достигнута.

Второй урок предполагал выполнение работы по построению схематизированных моделей, т.е. таких моделей, построение которых не опирается на конкретные числовые данные, но отображает условия задачи. Так же на этом уроке были разобраны решения задач первого типа, причем графические модели этих задач были построены на первом этапе урока.

Перейти к схематизированным моделям после построения моделей для конкретных случаев оказалось достаточно просто, так как на них ученики научились отображать основные моменты, а именно встречное движение двух объектов, поняли, как отражается на графике условие того, что один объект двигался быстрее другого. Только у некоторых учеников вызвало затруднение построить график одного объекта, движущегося на встречу другому. Это затруднение связанно с тем, что для конкретных числовых данных, точка на координатной плоскости, из которой начинал движение этот объект, была определена, а в данном случае ее нужно было изображать условно. Но эти трудности были преодолены и все ученики владели методами построения графических моделей задач. Далее была проведена работа по интерпретации моделей, ученики находили геометрические образы данных задачи, неизвестных, отвечали на разные вопросы об условиях задачи, ответы на которые можно получить, опираясь на графические модели.

Данная работа так же не вызвала у учащихся существенных затруднений, и поэтому мы перешли к решению задач.

Первой разобранной задачей была задача 6, приведенная во втором параграфе главы 2. Ученики предварительно на предыдущем этапе урока, строили ее модель, но модель они строили по условию, вопрос задачи, к тому моменту, не был сформулирован. После того как был поставлен вопрос, некоторые ученики высказали предположение, что данных задачи недостаточно. Но геометрическая модель указывала на обратное, так как величины данных однозначно определяли размеры отрезка, длину которого требовалось найти. На это было указано и поставлен вопрос, как найти длину этого отрезка. Вопрос вызвал затруднение, но после того как было предложено рассмотреть подобие треугольников, метод решения был найден за достаточно короткий период. Данное затруднение связанно с тем, что обращение к геометрии в подобных случаях является новым, даже неожиданным шагом. У учеников данный метод вызвал интерес, так как решение получено достаточно просто, хотя в начале высказывались предположения о том, что задача неразрешима. С другой стороны у них оставались сомнения в правильности результата в связи с тем, что если не обращаться к графической модели, то условия задачи кажутся недостаточными. Поэтому было рассмотрено решение, не опирающееся на графическую модель, для того, чтобы подтвердить результат и оценить преимущества данного способа.

После того как был рассмотрен второй метод решения, были сформулированы основные этапы решения задачи с применением графических моделей. К ним относятся: 1) построить графическую модель по условию задачи, 2) найти геометрический образ данных величин и записать их на рисунке, 3) найти геометрический образ неизвестного и перейти к соответствующей геометрической задаче 4) от геометрической задачи перейти к математической модели, 5) решить полученное уравнение получить ответ, 6) проверить результат, записать ответ.

После этого на данном уроке было решено еще две задачи. Ученики быстро справились с решением этих задач.

Как показали ответы у доски, решение было полным, описан каждый этап решения, осознано использовались результаты каждого этапа решения, все выводы по ходу решения были обоснованными. На этом уроке ученики успешно овладели методами решения задач первого типа. Это можно объяснить следующими причинами: так как класс математический, то он является достаточно сильным, и с геометрическими задачами, которые они получали на третьем этапе решения, они успешно справлялись; сам метод вызвал у них интерес, это было видно по динамике их работы; этапы решения применялись осознано, так как каждый этап естественно следует за предыдущим, все данные представлены в наглядном виде, что упрощает анализ задачи.

Целью третьего урока было закрепление умений и навыков в решении задач первого типа и обучение решению задач второго типа.

Первой части этой цели соответствовало решение системы задач первого типа. Как и на предыдущем уроке решение задач не вызвало существенных затруднений, только у некоторых учеников возникали трудности в решений соответствующих геометрических задач, но они были преодолены.

Далее было рассказано, что существуют задачи, решение которых нецелесообразно искать, применяя геометрические рассуждения, так как получающуюся при этом геометрическую задачу решить не легче, чем решить всю задачу при помощи рассуждений, оперирующих терминами движения. Тем не менее, графическая модель является существенным подспорьем в деле решения такой задачи. Все это было представлено при решении конкретной задачи второго типа.

Первой из таких задач была задача 7 второго параграфа главы второй. Было рассказано, что длину искомого отрезка хотя и можно найти, применяя геометрические рассуждения, но сама по себе геометрическая задача будет сложной, придется применить метод координат. Тем не менее, опираясь на графическую модель, мы можем получить некоторые факты, при помощи которых перейти к математической модели.

Решение задачи проводилось на доске совместно с классом. Было предложено весь путь обозначить за единицу. Далее были поставлены наводящие вопросы, например: «Что можно сказать о совместном пути, пройденном велосипедистом и пешеходом, к моменту первой встречи?». Ответы на эти вопросы позволили сформулировать утверждения, следующие из условия, в виде, удобном для составления системы уравнений. Получение утверждений опиралось на графическую модель, в которой их справедливость была представлена наглядно. Было рассказано, что этапы решения задачи этого типа те же, но в отличие от задач первого типа мы не решаем геометрическую задачу, а приходим к математической модели, опираясь на графическую модель.

Далее следовало самостоятельное решение задач. Нужно отметить, что, в отличие от задач первого типа, данные задачи вызвали затруднения в решении. Это связанно с тем, что графическая модель здесь играет вспомогательную роль, она не приводит непосредственно к математической модели, а только помогает найти путь к ее построению, каждый раз рассуждения содержат новые отличительные особенности. Но данный подход упрощает поиск решения задачи, так как вся информация представлена наглядно и помогает проводить анализ задачи, переходить к математической модели. Кроме того, использование графической модели помогает осознанно искать путь решения, так как наглядно раскрывает связи между данными и неизвестными задачи, что непосредственно приводит к математической модели.