Этот этап нужно начать с разбора простых задач, указав признаки, по которым мы применяем именно данный метод.
В зависимости от значений параметра a найти количество корней уравнения .
Если выражение имеет вид, который позволяет решить задачу с параметром методом «вращающаяся прямая», то его достаточно просто преобразовать к виду, который позволяет нам решить данную задачу метолом «движущаяся прямая». Для этого достаточно поделить левую и правую часть выражения на х, следя при этом за равносильностью преобразований. Этот момент должен быть рассмотрен при решении задач для формирования умений находить более рациональный путь в том или ином задании. Относительная простота построения графика функции в случае решения методом «вращающаяся прямая» компенсируется более трудным получением ответа из графической модели, так как иногда для его получения требуется переходить к уравнению, используя производную, рассматривать характер монотонности функции, производить относительно трудные сопутствующие вычисления. Проще и нагляднее в этом отношении пользоваться методом «движущаяся прямая» и, если построение функции – не слишком трудная задача, то, скорее всего, этот метод является более рациональным. Для формирования умения выбирать более рациональный путь нужно дать задание решить обоими способами задачу с параметром. Для формирования и закрепления умений и навыков работы с графическими моделями при решении задач с параметрами нужно постепенно переходить к более сложным заданиям, в которых варьируются значения независимой переменной, условия заданий и увеличивается арсенал требующихся аналитических методов.
Метод «неизвестное-параметр».
При решении задач данным методом параметр объявляется переменной. В системе координат строится множество точек, которое задает уравнение или система уравнений, при помощи этого построения находятся требуемые значения параметра. В основе данного метода лежит так называемый метод областей – построение множества точек плоскости, которое задает данное уравнение с двумя переменными или система уравнений. Метод областей можно в некотором смысле назвать обобщением метода интервалов на случай уравнений с двумя переменными. Овладеть методом областей – значит уметь строить множества точек, задаваемые уравнениями в системе координат, а это умение предполагает в свою очередь умения построения графиков функций и решения простейших неравенств с двумя переменными.
Подготовительная работа в данном случае представляет собой обучение методу областей. Обучение нужно начать с построения множеств точек, которые являются решениями простейших неравенств. Это связанно с тем, что решение более сложных неравенств сводится к решению простейших. Кроме того, на их примере можно наглядно продемонстрировать алгоритм построения множеств и обосновать его, проведя аналогию с методом интервалов.
Построить в координатной плоскости множество точек удовлетворяющих неравенству .
Преобразуем данное неравенство к виду
Далее нужно построить множество для системы неравенств. Лучше сделать это, дополнив уже рассмотренное неравенство до системы, добавив линейное неравенство.
В последствии нужно решить систему заданий, которая предполагает переход от линейных неравенств к линейным неравенствам с модулями, к произвольным выражениям, к выражениям которые требуют преобразований.
Указать множество точек плоскости, удовлетворяющих условиям:
Каждое из этих заданий преобразуется к равносильной системе, где используются построения для элементарных функций.
На этапе обучения моделированию нужно перейти к задачам с параметрами. На этом этапе нужно объяснить, что параметр рассматривается как переменная, и показать, что существуют два случая: параметр объявляется независимой переменной и параметр зависит от значений другой переменной. По сути, мы получаем тот же метод областей, но задача усложняется в связи с тем, что кроме построения мы должны, опираясь на иллюстрацию, произвести отбор значений параметра которые требуются в задании. Разбор задач нужно начать с относительно простых заданий, для того чтобы показать действие данного метода.
При каких значениях параметра aимеет единственное решение система неравенств
Пусть a будет переменной. Для построения графической модели системы содержащей неравенство нам потребуется метод областей. Зависимая переменная a. Это связанно с тем, что a проще выразить через x. В качестве независимой переменной всегда выбирают ту, которую проще выразить через другую. Постройте в системе координат xOa множество точек, задаваемое системой. Мы получили фигуру (рис. 10) ограниченную параболами