Задача 2.2 У трикутників
Розв’язок. Нехай
Рис.2.6 До задачі 2.2 [8]
Побудуємо трикутник
Трикутники
Трикутник називається рівнобедреним, якщо в нього дві сторони рівні. Ці рівні сторони називаються бічними сторонами, а третя сторона називається основою трикутника.
На рисунку 3.1 зображений рівнобедрений трикутник
Рис.3.1 До визначення рівнобедреного трикутника [8]
Теорема 3.1 (властивість кутів рівнобедренного трикутника)
В рівнобедренному трикутнику кути при основі рівні.
Доведення.
Нехай
Рис.3.2 До доведення теореми 3.1 [8]
Трикутник
Теорема доведена.
Трикутник, у якого всі сторони рівні, називається рівностороннім.
Теорема 3.2 (ознака рівнобедреного трикутника).
Якщо в трикутнику два кути рівні, то він рівнобедрений.
Доведення. Нехай
Рис. 3.3 До доведення теореми 3.2 [8]
Доведемо, що він рівнобедрений з основою
Трикутник
Теорема доведена.
Теорема (3.2) називається зворотньою теоремі (3.1). Висновок теореми (3.1) є умовою теореми (3.2). А умова теореми (3.1) є висновком теореми (3.2). Не всяка теорема має зворотну, тобто якщо дана теорема вірна, те зворотна теорема може бути невірна.
Теорема 3.3 (властивість медіани рівнобедреного трикутника).
У рівнобедреному трикутнику медіана, проведена до основи, є бісектрисою й висотою.
Доведення. Нехай
Рис.3.4 До доведення теореми 3.3 [8]
Трикутники
З рівності трикутників витікає рівність кутів:
Теорема доведена.
Задача 3.1 Доведіть, що в рівностороннього трикутника всі кути рівні.
Рішення. Нехай
Рис.3.5 До задачі 3.1 [8]
Тому що