Смекни!
smekni.com

Обучение информатике (стр. 8 из 12)

4.

8.

ЛАБОРАТОРНАЯ РАБОТА №3.

Тема. Дифференцирование функции. Геометрический смысл производной.

Цель. Научиться находить численное значение производной функции в заданной точке.

Краткие сведения.

I. Вычисление производной функции.

Оператор производной Mathcad предназначен для нахождения численного значения производной функции в заданной точке. Для вычисления производной используется клавиша со знаком ?.

Для того, чтобы найти производную функции и вычислить ее численное значение, необходимо сделать следующее:

-Сначала определить точку, в которой необходимо найти производную.

-Щелкнуть ниже определения этой точки. Затем набрать ?. Появится оператор производной с двумя полями:

-Щелкнуть на поле в знаменателе и набрать имя переменной, по которой проводится дифференцирование.

-Щелкнуть на поле справа от

и набрать выражение, которое нужно дифференцировать.

-Чтобы увидеть результат, нажать знак =.

ПРИМЕР 1. Найти производную

по
в точке

Решение:

Определим точку, в которой необходимо найти производную:

Введем оператор производной, заполним поля и вычислим производную:

Помните!

-Результат дифференцирования есть не функция, а число – значение производной в указанной точке переменной дифференцирования.

Хотя дифференцирование возвращает только одно число, можно определить одну функцию как производную другой функции. Например:

.

Вычисление f(x) будет возвращать в численной форме производную g(x) в точке х.

Выражение, которое нужно дифференцировать, может быть вещественным или комплексным.

Переменная дифференцирования должна быть простой неиндексированной переменной.

II. Геометрический смысл производной.

ПРИМЕР 2

Дана функция у=f(x). Построить график функции и касательную к графику в точке с абсциссой x=x0 , если

- уравнение касательной.

Решение:

Введем данную функцию и найдем ее значение в точке

:

Найдем значение производной данной функции в точке

:

Запишем уравнение касательной для данной функции:

Построим график данной функции и касательную к ней.

Задания для самостоятельного выполнения.

Задание 1. Найти производную функции в произвольной точке.

1.

5.
9.

2.

6.
10.

3.

7.

4.

8.

Задание 2.

Дана функция y=f(x). Построить график функции и касательную к графику в точке с абсциссой x=x0. Y=f(x0)(x-x0)+f(x0) – уравнение касательной.

1.

6.
, x0=π∕6

2.

, x0=2 7.
, x0=-1

3.

, x0=e 8.
, x0=-π/2

4.

, x0=-1 9.
, x0=3

5.

, x0=1 10.
, x0=-2

ЛАБОРАТОРНАЯ РАБОТА №4.

Тема. Интегральное исчисление.

Цель. Научиться находить определенные интегралы функций, вычислять площадь фигуры при помощи интеграла.

Краткие сведения.

I. Определенный интеграл.

Оператор интегрирования в Mathcad предназначен для численного вычисления определенного интеграла функции по некоторому интервалу.

Знак интеграла выводится при нажатии клавиши со знаком &.

Для того, чтобы вычислить определенный интеграл, необходимо сделать следующее:

-Щелкнуть в свободном месте и набрать знак &. Появится знак интеграла с пустыми полями для подынтегрального выражения, пределов интегрирования и переменной интегрирования:

-Щелкнуть на поле внизу и набрать нижний предел интегрирования. Щелкнуть на верхнем поле и набрать верхний предел интегрирования.

-Щелкнуть на поле между знаком интеграла и d и набрать выражение, которое нужно интегрировать.

-Щелкнуть на последнее пустое поле и набрать переменную интегрирования.

-Чтобы увидеть результат, нажать знак =.

ПРИМЕР 1 Вычислить определенный интеграл

от 0 до p/4.

Решение:

Введем знак интеграла и заполним пустые поля;

вычислим интеграл:

Помните!

-Пределы интегрирования должны быть вещественными. Выражение, которое нужно интегрировать может быть вещественным, либо комплексным.

-Кроме переменной интегрирования, все переменные в подынтегральном выражении должны быть определены ранее в другом месте рабочего документа.

-Переменная интегрирования должна быть простой переменной без индекса.

-Если переменная интегрирования является размерной величиной, верхний и нижний пределы интегрирования должны иметь ту же самую размерность.

II. Площадь фигуры.

Как известно, при помощи определенного интеграла можно вычислять площадь фигуры.

ПРИМЕР 2. Найти площадь фигуры, ограниченной графиками функций:

Решение.

Построим графики этих функций в одном графическом блоке:

Вычислим площадь полученной фигуры:

(кв.ед.)

Задания для самостоятельного выполнения.

Задание 1. Вычислить определенный интеграл.

1.

5.
9.
dx

2.

6.
10.

3.

7.

4.

8.